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SKOLIAD no. 105

Robert Bilinski

Please send your solutions to the problems in this edition by April 1,
2008. A copy of MATHEMATICAL MAYHEM Vol. 7 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_—_—— N r—— S ———

Our contest this month is the National Bank of New Zealand Competi-
tion 2004. Our thanks go to Warren Palmer, Otago University, Otago, New
Zealand for providing us with this contest and for permission to publish it.

National Bank of New Zealand
Junior Mathematics Competition 2004
(Years 9 and above) 1 hour allowed

1 (For year 9 only). Linda starts to write down the natural numbers in the
square cells of a very large piece of graph paper. (The graph paper is much
larger than shown below.) She starts at the bottom left corner and writes
down the numbers using the following arrangement:

f 17!

L X 16]15|14] 13
f 516|712
]

— al3|8]11
EREREEN 12910

(The arrangement is suggested in the left diagram; some of the numbers are
shown in the right diagram.)

We identify each of the cells using co-ordinates (a, b), where a is the
number of positions to the right, and b is the number of positions up from the
bottom. For example, the cell containing the number 1 has the co-ordinates
(1,1), while the cell containing the number 8 has the co-ordinates (3, 2).

(a) What are the co-ordinates of the cell containing the number 15?

(b) Starting with 1, 9, ..., every second number along the bottom row fol-
lows a certain pattern. In a few words, or using an algebraic expression,
describe these numbers.
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The cell containing the number 21 has the co-ordinates (5,5). What is
the number contained in the cell with co-ordinates (6, 6)? As well, find
the number contained in the cell with co-ordinates (7, 7).

(d) What is the number contained in the cell with co-ordinates (20, 20)?
(e) What are the coordinates of the cell containing the number 2004?
2. The diagram shows a 4 x 4 grid containing four coins. O
Imagine that we have enough coins available to place
anywhere we like on the grid. However, we would like O
to place coins so that we do not have three placed any- Q
where along a line, either horizontally, or vertically, or
diagonally. O
(a) Imagine that we add one more coin to the given layout. In how many

(b)

(©)

(d)

3. The diagram shows an equilateral triangle di-
vided into three smaller triangles. Small circles
have been placed on each of the vertices, and pos-
itive whole numbers (in this case 3, 3, 2, and 1)
have been written inside each small circle. Over-
all the shape forms four regions: three triangles
and an outer region. In each of these regions the
sum of the corresponding vertices has been writ-

ten.

different squares could we place the extra coin so that we would not
have three coins placed anywhere along a line?

Is it possible to add two more coins into the given layout so that we
would not have three coins placed anywhere along a line? If it is pos-
sible, show by drawing a diagram where the two extra coins could be
placed. If it is not possible, explain why not.

Imagine now that the grid contains no coins at all. What is the smallest
number of coins which could be placed onto the grid so that we would
not have three placed anywhere along a line, but if we were then to add
an extra coin we could not avoid having three placed along a line? De-
scribe, perhaps including a diagram, where the coins would be placed.

Imagine again that the grid contains no coins at all. What is the largest
number of coins which could be placed onto the grid so that nowhere
are there three coins placed anywhere along a line? Describe, perhaps
including a diagram, where the coins would be placed.

For example, the outer region contains the

value 8, because @)+ @+ @ = 8.

In this question we shall be investigating what happens when the num-

bers in the small circles are changed. (Throughout this question, only positive
whole numbers will be used.)
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(a) Imagine that the number in each one of the small circles is (5). What is
the total when the numbers inside all four regions are added together?

(b) Find possible numbers inside each of the four small circles so that the
sums in the three triangles are 8, 9, and 10, respectively, while the sum
of the outer region is 6.

(¢) Find possible numbers inside each of the four small circles so that the
sums in the three triangles are 8, 9, and 9, respectively. (Do not worry
about the sum of the outer region in this part of the question.)

(d) Is your answer to part (c) the only possible answer? If it is, explain why
no other answer is possible. If it is not, find another answer.

(e) We have been using positive whole numbers throughout this question.
In a few words, or using an algebraic expression, give a general descrip-
tion of the total when the numbers inside all four regions are added
together. Explain your reasoning for your description.

4. A class of students votes to select one candidate as their representative
on the school council. Their teacher decides on the following voting system:

“You have to rank the three candidates in order: first, second, and third.
Your first choice will receive one point; your second choice will receive two
points, and your third choice will receive four points. The winner will be the
student with the smallest total.”

After the voting has been completed, the teacher discovers that there is
a problem with this voting system. She explains the problem to the principal:

“The student with the smallest score is Diane, who received 44 points.
However, only four people voted for her as their first choice. Next was Be-
linda with 45 points. She received more first choice votes than anyone else.
Colin was in last place with 51 points, and he had more people voting for him
as their third choice than voted for the other candidates. It looks as though 1
will have to announce to the class that Diane is the winner, even though she
had the smallest number of people voting for her as first choice.”

(a) Show that 20 students took part in the voting.
(b) How many people voted for Belinda as their first choice?

(¢) Explain why your answer to (b) is the only possible answer which fits
the teacher’s description of how the votes were cast.

(d) How many people voted for Belinda as their second choice, and how
many people voted for her as their third choice?

5. Ari has cut some regular pentagons out of cardboard and is joining them
together to make a ring (see Figure 1). He has cut them using a template so
that they are all the same size.
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Figure 1 Figure 2

(a) The external angle of a regular pentagon is 72°. Explain how this value
is calculated.

(b) When the ring is complete, how many pentagons will there be?

Next Ari decides to join his pentagons with squares which have the
same side length (see Figure 2). He would like to combine them all together
to make a new ring with alternating squares and pentagons.

(¢) Is it possible for Ari to construct a ring in this way? If it is possible,
explain why. If it is not possible, explain why not.

(d) Ari finally decides to construct a ring using regular hexagons (six sides)
joined together. (This is not shown in any diagram.) If the hexagons
have side length of exactly one unit, what is the area of the shape en-
closed inside the ring?

Compétition 2004 junior de mathématiques de la

Banque Nationale de Nouvelle-Zélande
(secondaire 3 et plus) 1 heure au total

1 (Pour les 9®™¢ années ou secondaire 3 seulement). Linda commence 3 écrire
les nombres naturels dans les carrés d’une trés grande feuille de papier qua-
drillé. (Le papier est beaucoup plus grand qu’indiqué en bas.) Elle commence
en bas a gauche et écrit les nombres en utilisant I’arrangement :

i 17

| 16|15|14|13
i 516|712
[

— a|3|8|11
INEEER 112|910

(L’arrangement est suggéré par le diagramme a gauche; quelques nombres
sont placés dans le diagramme de droite.)

On identifie les cases en utilisant des coordonnées (a, b), ol a est le
nombre de positions a la droite, et b est le nombre de position vers le haut
a partir du bas. Par exemple, la case contenant 1 a pour coordonnées (1, 1),
alors que celle contenant 8 a les coordonnées (3, 2).
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@)
(b)

(©)

(d)
(e)

2. 1a figure montre un quadrillage 4 x 4 contenant O
quatre jetons. Imaginez qu’il y a assez de jetons pour
les placer ot nous voulons sur le quadrillage. Cepen- O
dant, nous voulons placer les jetons pour qu’il n’'y en ait O
pas trois par ligne, que ce soit horizontalement, vertica-
lement ou diagonalement. O

@)

(b)

(©)

(d)

Quelles sont les coordonnées de la case contenant 15 ?

En commencant avec 1, 9, ..., chaque deuxiéme nombre le long de
la ligne du bas suit un patron. En quelques mots ou en utilisant une
expression algébrique, décrivez ces nombres.

La case contenant le nombre 21 a pour coordonnées (5, 5). Quel est le
nombre contenu dans la case (6,6) ? De méme, trouver le nombre dans
la case de coordonnées (7, 7).

Quel est le nombre dans la case de coordonnées (20, 20) ?

Quelles sont les coordonnées de la case contenant 2004 ?

Imaginez que nous ajoutions un jeton a la disposition actuelle. Dans
combien de carrés pouvons nous placer ce jeton de plus pour ne pas
avoir trois jetons sur une méme ligne ?

Est-il possible d’ajouter deux jetons de plus a la disposition actuelle
pour ne pas avoir trois jetons sur une méme ligne ? Si c’est possible,
montrer ol les placer en faisant un dessin. Sinon, expliquer pourquoi
ce n’est pas possible.

Imaginez que le quadrillage n’ait plus de jetons. Quel est le plus petit
nombre de jetons que I’on peut placer sur le quadrillage pour ne pas en
avoir trois sur la méme ligne ? Décrire, avec possiblement un dessin a
I’appui, ot les jetons seraient placés.

Imaginez de nouveau un quadrillage vide. Quel est le plus grand nombre
de jetons que I’on peut placer sur le quadrillage pour ne pas en avoir
trois sur la méme ligne ? Décrire, avec possiblement un dessin a I’appui,
ot les jetons seraient placés.

3. On retrouve sur le dessin un triangle

équilatéral divisé en trois plus petits triangles. Les
petits cercles ont été placés sur les sommets, et
des nombres entiers positifs (ici 3, 3, 2 et 1) ont
€té écrits dans ces petits cercles. Globalement, la
forme crée quatre régions : trois triangles et une
région extérieure. On écrit dans chacune de ces
régions la somme des sommets correspondants.
Par exemple, dans la région extérieure, on a écrit

la valeur 8, car @+ @+ Q@) = 8.
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Dans cette question, nous allons explorer ce qui se passe lorsque les
nombres dans les petits cercles sont changés. (Seulement les nombres entiers
positifs seront utilisés.)

(a) Imaginez que le nombre dans chaque cercle est (5). Quel est le total des
nombres écrits dans les quatre régions ?

(b) Trouvez des nombres a mettre dans les cercles pour que les sommes
dans les triangles soient de 8, 9 et 10 alors que dans la région extérieure,
elle soit de 6.

(c) Trouvez des nombres 3 mettre dans les cercles pour que les sommes
dans les triangles soient de 8, 9 et 9 (ne vous préoccupez pas de la
somme dans la région extérieure dans cette sous-question).

(d) Votre réponse au (c) est-elle la seule possible? Si oui, expliquer pour-
quoi elle est la seule, sinon, trouver en d’autres.

(e) Nous avons utilisé des entiers positifs dans cette question. En quelques
mots, ou en utilisant des expressions algébriques, donner une descrip-
tion générale du total lorsque les nombres dans les quatre régions sont
additionnés ensemble. Expliquez le raisonement derriére votre descrip-
tion.

4. Une classe d’étudiants vote pour sélectionner un candidat comme repré-
sentant sur le conseil d’établissement. Leur professeur décide d’utiliser le
systéme de votation suivant :

«Vous devez ordonner les trois candidats dans I'ordre : le premier, le
deuxiéme et le troisiéme; votre premier choix obtient un point; votre
deuxiéme en recoit deux points, et votre troisiéme en recoit quatre points.
Le gagnant est I’étudiant avec le plus petit total.»

Aprés que le scrutin soit fini, le professeur découvre qu’il y a un prob-
Iéme avec ce systéme de votation. Elle explique le probléme au directeur :

«L’étudiant avec le score le plus bas est Diane, qui a recu 44 points. Par
contre, seulement quatre personnes ont voté pour elle en premiére place.
Ensuite, on retrouve Belinda avec 45 points. Elle a recu le plus de premiére
place. Colin est en dernier avec 51 points, et il a plus de gens votant pour
lui en troisiéme que les autres candidats. 1l semblerait que je dois prononcer
Diane gagnante, méme si elle a recu le moins de premiéres places.»

(a) Montrer que 20 étudiants ont voté.
(b) Combien de gens ont voté pour Belinda en premiére place ?

(¢) Expliquez pourquoi votre réponse au (b) est la seule réponse possible
qui correspond a la description du déroulement du vote de la profes-
seur.

(d) Combien de personnes ont voté pour Belinda dans leur deuxiéme choix,
et combien ont voté pour elle dans leur troisiéme choix?
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5. Ari a coupé des pentagones réguliers dans des cartes et les met ensemble
pour faire un anneau (voir Figure 1). Il les a coupé a I’aide d’'un patron pour
qu’ils soient de la méme grandeur.

Figure 1 Figure 2

(a) L'angle extérieur d’'un pentagone régulier est 72°. Expliquez comment
on calcule cette valeur.

(b) Quand I’anneau est fini, combien de pentagones y aura-t-il ?

Ensuite, Ari décide d’ajouter des carrés de méme longueur de c6té (voir
Figure 2). 1l voudrait alors faire un nouvel anneau en alternant les carrés et
les pentagones.

(¢) Est-il possible pour Ari de construire un anneau de cette maniére ? Si
c’est possible, expliquez pourquoi. Sinon, expliquez pourquoi pas.

(d) Ari décide finalement de construire un anneau utilisant des hexagones
réguliers (six cotés). (Il n'y a pas de dessin.) Si les c6tés des hexagones
ont une longueur d’une unité exactement, quelle est I'aire de la forme
incluse a l'intérieur de I’anneau ?

—_—— N r—— S ———

Ensuite, nous donnons les solutions du concours de I'’Association
Mathématique du Québec 2005 [2007 : 66-69].

1. (Le robot et les pommes.) Une caisse de bois est séparée en
9 compartiments comme indiqué sur le dessin. Un ingénieur a
programmé un robot pour qu’il remplisse la caisse de pommes
par paquets de quatre en laissant tomber une pomme dans |[11|28|17
chaque compartiment de facon a former un carré 2 x 2. 5 12] 7

Est-il possible pour le robot d’aboutir a la configuration a
droite 2 partir d’une caisse vide ?

Solution officielle.

La réponse est oui. On applique I'opération six fois au carré 2 x 2 du
coin Nord-Ouest, cinq fois au carré 2 x 2 du coin Sud-Ouest, sept fois au
carré 2 x 2 du coin Sud-Est et enfin dix fois au carré 2 x 2 du coin Nord-Est.

Aussi solutionné par Jochem van Gaalen, étudiant, Medway High School, Ilderton, ON.
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2. (Eight squares in a rectangle.) Divide a rectangle of length 9 cm and width
3 cm into eight squares.

Solution by Jochem van Gaalen, student, Medway High School, Ilderton,
ON, with a diagram from the official solution.

The table to the right shows all the Side length | 1
possible side lengths for a square and the Area 11419
corresponding area of the square. If we use
five 1 x 1 squares, one 2 x 2 square and two
3 x 3 squares, we have a total area of 27 (as
does the rectangle) and we have exactly 8 |
squares.

N
w

3. (Une étonnante distribution.) Une distribution statistique est composée
de 10 nombres naturels : x;, x3, T3, T4, T5, Y1, Y2, Y3, Y4, Ys- Lorsqu’ils
sont placés en ordre croissant, ces nombres nous donnent en fait la distribu-
tion suivante : xy, 2, T3, T4, Ts, Y5, Y4, Y3, Y2, y1. Nous avons plusieurs
informations :

(1) Les couples (z1,y1), (2,y2), (T3,¥3), (x4,ys) €t (x5,ys), sont tous
sur la droite d d’équation y = —2x + 24.

(2) La moyenne de cette distribution est 9, 4.
(3) La médiane et le mode ont tous deux la méme valeur.
(4) Les nombres x3 et x4 sont consécutifs.
(5) Le premier membre de la distribution vaut 1.
. . ' 4 . _ 1 2 .
(6) La droite d croise la parabole d’équation y = ;2 4 8x — 8 au point
(T2,Y2)-
Trouver les valeurs de la distribution originale =, x2, x3, x4, x5, Y1,
Y2, Y3, Y4, Ys. Suggestion : La médiane est le nombre tel que 50% des obser-

vations sont plus petites ou égales a ce nombre et 50% supérieures ou égales.
Le mode est la valeur qui est observée le plus souvent.

Solution officielle, modifiée par le rédacteur.

A cause de (5), z; = 1. Par (1), le couple (z1,%1) est sur la droite
d d’équation y = —2x + 24 et nous trouvons y; = 22. Il suffit d’'utiliser
(6) pour trouver le point (z2,y2). En effet, nous avons les deux équations
Yo = —%wg + 8x; — 8 et y; = —2x5 + 24. 1l y a deux solutions possibles
pour x3, soit £ = 16 et 3 = 4. La solution x; = 16 est A rejeter car elle
donne yo = —8, ce qui n’est pas admis. [l reste z; = 4ety, = —8+24 = 16.

Soit m la médiane. Elle doit étre égale au mode, par (3), ce qui implique
que m est un nombre de la distribution. En tenant compte de I'’ordre croissant
des nombres 1, x3, T3, T4, T5, Ys, Y4, Y3, Y2, Y1, On obtient m = %(w5+y5).
Sizs < ys, 0onaxs < m < ys. Mais ce n'est pas possible parce qu’il n’y a
pas de nombres de la distribution entre x5 et y5. Ainsi x5 = ys5. En utilisant
(1), on obtient x5 = —2x5 + 24, d’oli x5 = 8 et donc y5 = 8.
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A ce stade, notre distribution s'écrit 1, 4, x5, x4, 8, 22, 16, Y3, Y4, 8.
La moyenne de la distribution est
Ty t+x2+x3+ X4+ T5 +Ys +Ya+yYs+y2+y1
10
1+4+4 a3+ x4+ 8+ 8+ (—2x4 + 24) + (—2x3 + 24) + 16 + 22
10

107 — g — T4
10 ’

En tenant compte des faits que la moyenne est 9,4 et x4 = x3+ 1, on obtient
—2x3+ 106 = 94 ; ainsi, £3 = 6 et £4 = 7. On déduit finalement les valeurs
ys = 12 et y4 = 10. La distribution originale est donc

1,4,6,7,8, 22,16, 12, 10, 8.

4 (La belle somme de Gilbert.) Considérons les 6 facons possibles de per-
muter (c’est-a-dire mélanger) les chiffres du nombre 123 et additionnons le
tout. La somme trouvée s'écrit 123 + 132 + 213 + 231 + 312 + 321 = 1332.

Quel résultat aurions-nous obtenu si nous avions fait la somme des
5040 facons de permuter les chiffres du nombre 1234567 ?

Solution officielle.

Dans les 5040 permutations, chaque chiffre, parmi 1, 2, 3, 4, 5, 6, 7,
apparait 5040/7 = 720 fois comme unité, le méme nombre de fois comme
dizaine, comme centaine, etc. Le total est donc

720- (1 +2+34+4+5+6+7)
-(1 + 10 + 100 + 1000 + 10000 + 100000 + 1000000)
= 720 x 28 x 1111111 = 22399997760 .

5. (Le voyage a Québec.) Juliette et Philippe partent en méme temps et par-
courent les 250 km qui séparent Montréal de Québec dans deux voitures
identiques. Philippe parcourt la premiére moitié du trajet a 80 km/h et la
seconde moitié a3 120 km/h. En fait, il arrive en méme temps que Juliette qui
a roulé tout le long a vitesse constante. La consommation d’essence de ce
type de voiture dépend de la vitesse du véhicule. Elle est donnée par la for-
mule ¢ = 10+ ;—O, ol v est la vitesse en km/h et c la consommation en litres

par 100 km. Sachant que ce jour-13, le litre d’essence vaut 0,80%, combien
ont-il dépensé ensemble pour le voyage ?

Solution officielle.

Les consommations respectives de Philippe durant chacune des moitiés
sontc; = 10+ 33 = 14 et c; = 10+ 22> = 16 (en litres par 100 km). Comme
il parcourt durant chacune des moitiés 125 km, sa consommation totale est
1,25(c; + ¢2) = 1,25 x 30. Puisqu'un litre vaut 0, 80$, le coit total de
Philippe est 0,80 x 1,25 x 30 = 30$.
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Calculons maintenant le cofit total de Juliette. Il faut donc établir sa
vitesse. Comme elle a parcouru le trajet dans le méme temps que Philippe,
sa vitesse est égale a la vitesse moyenne de Philippe. Contrairement 3 ce
qu’on pourrait croire, la vitesse moyenne sur I’ensemble du parcours n’est
pas égale a la moyenne des vitesses sur le parcours. La vitesse moyenne est
donnée par v = 250/(t; +t2), ol t; et t, représentent les temps de parcours
(en heures) de chacune des moitiés. On a

125 km 125 125 km 125
b= 80 km/h s N et = 120 km/h 120 I
Donc,
250 km
v = qg5, 15 — 96km/h.
125, L 125
80 120

La consommation de Juliette est de 10 + % = 14,8 litres par 100 km. Sa
consommation totale d’essence aura donc été de 14,8 x 2,5 et le coiit total
de Juliette est 0,8 x 14,8 X 2,5 = 29, 60$.

Ensemble, le voyage aura coiité en carburant 30, 00 + 29, 60 = 59, 60$.

Une solution erronnée a été soumise.

6. (Les ages multiples.) Du 21 aoit 1989 au 7 mai (inclusivement) 1990, Jean
a eu 5 fois I’age de sa fille Claire. Du 8 mai au 20 aot (inclusivement) 1992,
Jean a eu 4 fois I’age de sa fille. Trouver la date de naissance de chacun.

Note : par age, on entend la définition usuelle qui est le nombre
d’années complétes écoulées depuis la naissance.

Solution officielle, modifiée par le rédacteur.

On désignera par J l’année de naissance de Jean et par C l'année de
naissance de Claire. Nous allons calculer sur deux dates, la premiére choisie
arbitrairement entre le 21 aodit 1989 et le 7 mai 1990, soit le 31 décembre
1989, et I’autre choisie arbitrairement entre le 8 mai et le 20 aotit 1992, soit
le 1er juillet 1992.

Il est clair que les anniversaires de Jean et Claire sont le 8 mai ou le 21
aoiit, sans qu’on puisse préciser lequel est lequel. Nous avons deux cases a
considérer.

Cas 1. Jean est né un 8 mai et Claire, un 21 aofit.
Le 31 décembre 1989, I'4ge de Jean est 1989 — J et I'4ge de Claire est
1989 — C. Nous avons

1989 —J = 5(1989 — C). 1)

Le ler juillet 1992, I'age de Jean est 1992 — J et I'4ge de Claire est 1991 — C
(pas 1992 — C parce que I'anniversaire de Claire n’est pas encore arrivé en
1992). Nous avons

1992 —J = 4(1991 — C). )
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En soustrayant (1) de (2), on trouve 3 = C — 1981; donc C = 1984 et
J = 1964.

En effet, le 31 décembre 1989, Jean avait 25 ans, soit cinq fois I’age de
Claire. Le 1er juillet 1992, Jean avait 28 ans, soit quatre fois 1’age de Claire.

Cas 2. Jean est né un 21 aoiit et Claire, un 8 mai.

Le 31 décembre 1989, les ages de Jean et Claire sont les mémes que
dans la cas 1, et nous avons I’équation (1).

Le ler juillet 1992, I'age de Jean est 1991 — J et I'age de Claire est
1992 — C. Nous avons

1991 —J = 4(1992 — C). 3)

Toujours en soustrayant (1) de (3), ona 2 = C — 1977; c'est-a-dire,
C =1979 et J = 1939.

Ainsi, le 31 décembre 1989, Jean et Claire ont respectivement 50 et 10
ans, tandis qu’au 1ler juillet 1992, ils ont 52 et 13 ans.

Il y a donc deux solutions :

Naissance de Jean : 8 mai 1964,
Naissance de Claire : 21 aoiit 1984,
ou
Naissance de Jean : 21 aofiit 1939,
Naissance de Claire : 8 mai 1979.

Une solution erronnée a été soumise.

7. (La poule géométre.) Une figure plane
en forme d’ceuf est délimitée par quatre
arcs de cercles désignés par AB, BF, FE
et EA mis bout  bout de la facon indiquée
par la figure a droite. Sachant que le rayon
AO est de longueur 1, déterminer I’aire de
la figure.

Solution officielle.

Notons que le segment AC = /2. L'aire de I'ceuf A est égale 2 I'aire
du demi-cercle ABO (de rayon 1) + l'aire du secteur BAF (rayon 2) + l'aire
du secteur ABE (rayon 2) + I'aire du quart de cercle (rayon (2 — +/2)) - aire
du triangle ABC (base 2 et hauteur 1). On obtient donc

A=lnylr24le2 il y2)° 12 = 3-v2)r—1,

ce qui donne approximativement A = 3, 9819.

——— | NS
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Monika
Khbeis (Ascension of Our Lord Secondary School, Mississauga), Eric Robert
(Leo Hayes High School, Fredericton), Larry Rice (University of Waterloo),
and Ron Lancaster (University of Toronto).

%

Mayhem Problems

Please send your solutions to the problems in this edition by 1 March 2008.
Solutions received after this date will only be considered if there is time before
publication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English.

The editor thanks Jean-Marc Terrier of the University of Montreal for transla-
tions of the problems.

We falsely attributed Mayhem proposal M276 [2007 : 8] to Babis Stergiou.
The proposal was actually submitted by George Apostolopoulos, Mesologi, Greece,
and we apologize to George for this oversight.

—_— N r——

M304. corrected. Proposed by Mihaly Bencze, Brasov, Romania.

Let a, b, and c be real numbers such that both a +b+4c and ab+ bc+ca
are rational numbers, and @ + b+ ¢ # 0. Show that a* + b* + c¢* is a rational
number if and only if the product abc is a rational number.

M313. Proposed by Babis Stergiou, Chalkida, Greece.

Two circles with centres K and L intersect at points A and B. The
tangent at A to the circle centred at L meets segment KB at M and the
tangent at A to the circle centred at K meets segment BL at N. Prove that
AB L MN.

M314. Proposed by Mihaly Bencze, Brasov, Romania.

Let a be a real number with a > 1. Solve the following equation for «x:

a'/*x 4+ a®/x = 2a.
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M315. Proposed by Mihaly Bencze, Brasov, Romania.

Let ABC be a triangle. Let D be the intersection of AB with the
interior bisector of angle C, and let E be the mid-point of AB. Show that
CD+ CE < AC + BC.

M316. Proposed by Neven Juri¢, Zagreb, Croatia.

Determine the value of 3 !

1<k<99 kvE+ 1+ (k+1)VE

M317. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Square ABCD is inscribed in a sector of a circle C
of radius 1 so that there is one vertex on each radius and D
two vertices on the arc. The angle at the centre is 26.
Determine the value of 6 that results in the square of B
largest area. 26

M318. Proposed by Houda Anoun, Bordeaux, France.

Are there real numbers x and y such that 22 + zy = 3 and = — y? = 2?

M304. correction. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit a, b et c trois nombres réels tels que les sommes a + b + c et
ab+ bc+ ca sont des nombres rationnels, et a + b+ ¢ # 0. Montrer qu’alors
a* + b* 4 c* est un nombre rationnel si et seulement si le product abc est un
nombre rationnel.

M313. Proposé par Babis Stergiou, Chalkida, Gréce.

Deux cercles de centres K et L se coupent aux points A et B. La tan-
gente en A au cercle centré en L coupe le segment KB en M et la tan-
gente en A au cercle centré en K coupe le segment BL en N. Montrer que
AB L MN.

M314. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit @ un nombre réel avec a > 1. Résoudre I'équation suivante par
rapporta = :
a'/*x 4+ a®/x = 2a.

M315. Proposé par Mihaly Bencze, Brasov, Roumanie.

Dans un triangle ABC, soit D le point d’intersection de AB avec la
bissectrice intérieure de I'angle C, et soit E le point milieu de AB. Montrer
que CD + CE < AC + BC.
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M316. Proposé par Neven Juri¢, Zagreb, Croatie.

Trouver la valeur de ) !

1<k<oo kvE+ 1+ (k+1)VE

M317. Proposé par Bruce Shawyer, Université Memorial de Terre-Neuve,
St. John’s, NL.

On inscrit un carré ABC D dans un secteur d’'un C
cercle de rayon 1 de sorte qu’il ait un sommet sur cha- D
cun des rayons frontiéres et deux sommets sur l'arc
frontiére. Si I’angle au centre vaut 260, déterminer la B
valeur de 0 qui rend I’aire du carré maximale. 20

M318. Proposé par Houda Anoun, Bordeaux, France.

Existe-t-il des nombres réels x et y tels que 2 +zy = 3etx—y? = 2?

—_—— N r—— S ———

Mayhem Solutions

M263. Proposed by Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON.

Let a, b, and n be integers such that (a? + b?)/5 = n. Prove that
n = c2 + d? for some integers c and d.

Solution by Salem Malikic, student, Sarajevo College, Sarajevo, Bosnia and
Herzegovina, modified by the editor.

Without loss of generality, we assume that the remainder when a is
divided by 5 is at least as large as the remainder when b is divided by 5.
Since 5 | (a? +b?), the possibilities for (a,b) (mod 5) are then (0, 0), (2,1),
(3,1), (4,2), and (4, 3). We consider each of these cases in turn.

Case 1: (a,b) = (0,0) (mod 5).
Then a = 5k, b = 5t, where k, t € Z. Therefore,

_ a®?+b?

— = 5k% 4+ 5t2 = (2k +1t)% + (k — 2t)?,

from which we see that n = ¢ + d?, where ¢ = 2k +t and d = k — 2t.

Case 2: (a,b) = (2,1) (mod 5).
Then a = 5k + 2, b = 5t + 1, where k, t € Z. Therefore,

_ a? + b2

— = 5k +4k +5t> + 2t +1 = (2k+t+ 1) + (k — 2t)?,

from which we see that n = ¢? + d?, wherec =2k +t+1and d = k — 2t.
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Case 3: (a,b) = (3,1) (mod 5).
Then a = 5k + 3, b = 5t + 1, where k, t € Z. Therefore,

a? + b2

= = 5k +6k+5t°+2t+2 = (2k—t+1)2+ (2t +k+1)%,

from which we see that n = ¢2+4d?, wherec = 2k—t+1andd = 2t+k+1.
Case 4: (a,b) = (4,2) (mod 5).
Then a = 5k + 4, b = 5t + 2, where k, t € Z. Therefore,
a? + b?
5

= 5k>4+8k+5t>F+4t+4 = (2k+t+2)2+ (2t — k)2,

from which we see that n = ¢? + d?, wherec =2k +t+2and d = 2t — k.
Case 5: (a,b) = (4,3) (mod 5).
Then a = 5k + 4, b = 5t + 3, where k, t € Z. Therefore,
a? + b2
5

= 5k?4+8k+5t2+6t+5 = (k+2t+2)2+(2k—t+1)2,

from which we see that n = ¢2+4d?, where c = k+2t+2andd = 2k —t+1.

Therefore, if (a2 + b2?)/5 = n, where a, b, n € Z, then n = c2 + d?
for somec, d € Z.

Also solved by ARKADY ALT, San Jose, CA, USA; HASAN DENKER, Istanbul, Turkey;
and D. KIPP JOHNSON, Beaverton, OR, USA. One incomplete solution was also submitted.

Johnson’s argument involved the fact that n can be written as the sum of two squares

if and only if its prime factorization contains no odd powers of primes g = 3 (mod 4). Since
5n = a? + b2, it must be possible to write n as a sum of two squares.

M264. Proposed by Yakub N. Aliyev, Baku State University, Baku,
Azerbaijan.

Given 1001 real numbers placed around a circle such that each number
is the arithmetic mean of its neighbours or else its two neighbours are equal,
prove that all the numbers are equal.

Solution by D. Kipp Johnson, Beaverton, OR, USA, modified by the editor.

Let 1, x2, ..., T1001 denote 1001 real numbers placed around a circle
in a fixed direction. For convenience, we regard the indices 1, 2, ..., 1001
as integers modulo 1001 (in particular, g = x1901 and x1992 = x1).

For each ¢, either 2a; = x;_1 + x;41 (if x; is the arithmetic mean of its

neighbours) or else ;1 = x;11; in either case, |x;11 — ;| = |z; — ©i—1].

Consequently, if we let § = |x2 — 1|, then we have |z; 1 — ;| = d for all <.
1001

Note that Z (mi+1 — :Bz) = X1002 — €1 = 0, since x1002 = 1. Each

=1
term of this sum is either § or —4. If § # 0, then the number of positive
terms in the sum must equal the number of negative terms (since the sum
is 0). But this is impossible, because the sum has an odd number of terms.
We conclude that § = 0.
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Therefore, any two neighbouring numbers are equal, and thus, all of
the numbers z;, x2, ..., 1001 Must be equal.

There were two incorrect solutions submitted.

M265. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Given triangle ABC and DE || BC,with D € ABand E € AC. Drop
perpendiculars from D and E to BC, meeting BC at F and K, respectively.

[ABC] _ 32 . . |AD|
If DEKF] — 7" determine the ratio DB’

Solution by Gustavo Krimker, Universidad CAECE, Buenos Aires, Argentina.

Let AH be the altitude from A to BC, meeting DE at L. From

[ABC] _ 32 . 1 AH.BC — 22 DE. LH- that i
DEKF] — 7' it follows that ; AH - BC = = DE - LH; that s,
AH 64 DEFE
IH ~ 7 BO M
Since DE || BC, triangles ABC and ADE are similar. Thus,
AD DE
AB ~ BC @
The condition DE || BC also implies that
AH AB
LH =~ DB’ 3)

e . . AB 64 AD ..
Substituting (2) and (3) into (1), we obtain DE = 7 AB Continuing to

solve for ?)—1133 leads to the following equivalent statements:

AB> _ 64 AD AB _ 64 AD A
DB2 ©~ 7 AB DB -~ 7 DB’
(AD+DB)2 _ 64 AD
DB , 7 DB’ p/ |L E
AD 64 AD
(DB+1) - 7 DB’
AD\? 50 AD
=) =2~ 41 =
(DB) 7DBJr 0,

C
AD _ 1 _AD _ . B FH K
DB 7 DB~
Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; and SALEM MALIKIC,
student, Sarajevo College, Sarajevo, Bosnia and Herzegovina. There were three incomplete
solutions submitted.

resulting in
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M266. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

A pair of two-digit numbers has the following properties:

1. The sum of the four digits is 17.

2. The sum of the two numbers is 89.

3. The product of the four digits is 210.

4. The product of the two numbers is 1924.

Determine the two numbers.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

Since 1924 = 22.13. 37, there are exactly 12 positive divisors of 1924,
namely 1, 2, 4, 13, 26, 37, 52, 74, 148, 481, 962, and 1924. Thus, the
only factorizations of 1924 as the product of a pair of two-digit numbers are
26 - 74 and 37 - 52. It follows from any one of the first three properties that
the numbers we seek are 37 and 52.

Remark: If we assume only properties 2 and 4, we need not make any
assumption about the digits of the numbers: if two numbers x and y satisfy
z + y = 89 and zy = 1924, it follows that the numbers are 37 and 52.

Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; HASAN DENKER,
Istanbul, Turkey; JOSE LUIS DIAZ-BARRERO, Universitat Politécnjca de Catalunya, Barcelona,
Spain; D. KIPP JOHNSON, Beaverton, OR, USA; SALEM MALIKIC, student, Sarajevo College,

Sarajevo, Bosnia and Herzegovina; VEDULA N. MURTY, Dover, PA, USA; and KUNAL SINGH,
student, Kendriya Vidyalaya School, Shillong, India.

M267. Proposed by the Mayhem Staff.

Find a quintic polynomial f(z) such that, if n is a positive integer
consisting of the digit 7 repeated k times, then f(n) consists of the digit
7 repeated 5k + 3 times. (For example, f(77) = 7777777777777.) Compare
with M256 [2006 : 265].

Solution by Arkady Alt, San Jose, CA, USA, modified by the editor.

Let f(x) be a polynomial with the desired property. If n is a positive
integer consisting of the digit 7 repeated k times, then n = g(lok —1).
We require f(n) to consist of the digit 7 repeated 5k + 3 times; that is,
f(n) = I(10%%+3 —1).

Since n = Z(10* — 1), we have 10* — 1 = 2n, and thus 10* = 2n 4+ 1.
Then

f(n) = I(1000- (10%)5 —1) = I (1000- (2n+1)° - 1) .

Thus, f(z) = 7

/N

1000 - (22 +1)° — 1).



403

We can write f(x) in a somewhat nicer form:
fl) = B0 ()’ = F = 0 ((Jm )T - 1) 40
= 777 4 7000 <($x+1)5—1) .

Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; and D. KIPP JOHNSON,
Beaverton, OR, USA.

M268. Proposed by the Mayhem i ip 4y

Staff. spenene T T o s
Rectangle ABCD is inscribed in

acircle I' and P is a point on T'. Lines A; W _\pB

parallel to the sides of the rectangle
are drawn through P and meet one
pair of sides at points W and X and
the extensions of the other pair of ;
sides at Y and Z. Prove that the line 1 X
through W and Y is perpendicular to :
the line through X and Z.

i
Similar solutions by Courtis G. Chryssostomos, Larissa, Greece; Hasan
Denker, Istanbul, Turkey; and Vedula N. Murty, Dover, PA, USA.

If P is coincident with any of the four points A, B, C, or D, then the
statement is true.

Suppose now that P ¢ {A, B, C, D}. Let the centre of circle I be at
(0,0), and let the coordinates of the vertices of the rectangle inscribed in T'
be A(—a,b), B(a,b), C(a,—b), and D(—a, —b), for some a > 0and b > 0.
Let P have coordinates (zg,yo). The coordinates of points W, X, Y, and Z
are then W (x¢, b), X (xo, —b), Y(—a,yo), and Z(a, yo)-

The equation of T is 2 + y2? = a2 + b2. Since P(xo,yo) is on T, we
have z2 + y2 = a? + b?; that is,

2 2
.’BO — a
— = -—1. 1
yg — b2 @
The slope of the line through W and Y is L_z, and the slope of
- - 0
the line through X and Z is % The product of these two slopes is
- 0
< Yo—b >_(yo—|—b) _ %o
—a — o a—x9) x2—a? '

where the last step uses (1). Thus, the lines WY and X Z are perpendicular.

Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallorca, Spain; COURTIS G.
CHRYSSOSTOMOS, Larissa, Greece; and SALEM MALIKIC, student, Sarajevo College, Sarajevo,
Bosnia and Herzegovina.
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Problem of the Month
Ian VanderBurgh

Rectangles in circles or circles in rectangles? This month, we look at
both and review some geometry.

Problem 1 (2005 Fermat Contest)

In the diagram, a semicircle has diam- Q R
eter XY. Rectangle PQRS is inscribed in
the semicircle with PQ = 12 and QR = 28.
Square STUV has T on RS, U on the semi-
circle, and V on XY. What is the area of
STUV?

Problem 2

In the diagram, the rectangle has height
4 and width 5, the circle with centre A has
radius r, and the circle with centre B has
radius 1. Each of the circles is tangent to two
sides of the rectangle and to the other circle.
Determine the value of r.

What are the important facts about circles that we need to know? What
strategies should we use? These are good questions to ask (about whatever
figures are in the problem) whenever attacking a problem in geometry.

There are really only three facts that we need to be able to attack either
of these problems:

(i) The distance from the centre of a circle to any point on its circumference
equals the radius.

(ii) If a circle is tangent to a line, the radius to the point of tangency forms
a right angle with the line.

(iii) If two circles are tangent, the straight line joining their centres passes
through the point of tangency and so its length is the sum of the radii
of the circles.

These are good facts, and relatively intuitive. But what strategies should we
use? Since it would make sense to try to take advantage of these facts, three
useful things to try are:

(a) Joining the centre of a circle to useful points on the circumference.
(b) Joining the centre of a circle to points of tangency with lines.
(c) Joining the centres of mutually tangent circles.

As it turns out, the only mathematical machinery that we will need
is the Pythagorean Theorem! This tends to be the case in these types of
problems, even in problems that look a fair bit more complicated.
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Solution to Problem 1: First, we mark the cen-
tre of the semi-circle, O, then we join O to Q,

R and U. Let r be the radius of the semi- Q 28 R
circle and s the side length of square STUV .

Now, O appears to be half-way between P 12 r r s
and S. Why is this true? Well, PQ = SR, T u
0OQ = OR and ZQPO = /RSO = 90°;

hence, AQPO and ARSO are congruent. X P o s vy
Thus, OP = OS = 1PS = 14.

By applying the Theorem of Pythagoras to AQPO, we obtain
r? = 122 4+ 142 = 340. (We could at this stage calculate r itself, but as
it turns out, we won’t need to.)

Next, we look at AOVU. This triangle is right-angled at V with
OU = r, UV = s, and OV = OS + SV = 14 + s. Therefore, by the
Theorem of Pythagoras,

oU? = UV?24+0V?,
r? s+ (s +14)%,

340 = s?+4 5?4 28s+ 196,
0 = 2s?+428s— 144,
0 = s2+14s—172,

0 = (s—4)(s+18);

thus, s = 4 or s = —18. We reject the second solution, since s must be
positive. Therefore, the area of square STUYV is 16.

For a complicated problem, we didn’t have to use much machinery.
Often, this is the case—a couple of judicious applications of the Pythagorean
Theorem and the solution of a quadratic equation or two often does the trick.

Of course, this problem was originally a multiple choice problem, and
the proposers demonstrated a malicious streak by asking “The area of square
STUYV is closestto ...” and giving the choices 12, 13, 14, 15, and 16. Since
the area was exactly 16 (instead of “close” to 16), one could be forgiven for
being somewhat concerned! (At the same time, the “niceness” of the answer
might lead one to believe that the answer was actually correct.)

Let’s apply what we’ve learned to Problem 2.

Solution to Problem 2: Following our suggestions
above, let’s join A and B to points of tangency
and to each other, and mark in right angles where B
we can. At this stage, its looks like we're stuck.

But we had the hint above of trying to use the 4
Pythagorean Theorem. To do that, we need a A
right-angled triangle. Do you see one? 1 don't,

so let’s build one, and mark in a few lengths too.
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Where does this get us? First, we know
that the length of AB is the sum of the radii
of the circles, or » + 1. Now let’s look at the
height of the rectangle, which is 4. Breaking this
into three pieces, it equals » + PB + 1; hence,
r+PB+1 = 4o0or PB = 3 — r. (Extend-
ing BP to the bottom edge of the rectangle might
help you see this.) Similarly, looking at the width,
r+ AP +1=5,0or AP =4 — r.

Using the Pythagorean Theorem,

A P
T

AB? = AP? 4+ PB?,
(r+1)? = (4—-7r)2+(3-r)?,
r’4+2r4+1 = r2 -8 +4+16+7r2—6r+9,
0 = 72 —16r+24.

Using the quadratic formula,

r =

16 + /162 — 4(1)(24 16 = /160
= 2 (1)(24) = :|:2 = 8+ 2v10.

Since the circle with radius = is contained in the rectangle, the radius r cannot
equal 8 + 24/10 (which is larger than 14). Thus, » = 8 — 24/10.

So the same types of ideas worked in both problems, which is kind
of nice. These techniques are relatively straightforward and do not require
a lot of sophisticated mathematical knowledge. They do often require some
insight (as in the construction of the right-angled triangle in the second prob-
lem), but that’s where our problem-solving experience comes in most handy.

I leave you with a challenge problem, adapted from this year’'s Hypa-
tia Contest. We’ll look at the solution in next month’s column. While this
problem seems more complicated than the ones above, it can be solved using

nothing more than the ideas we’ve seen so far.

Problem (2007 Hypatia Contest)

In the diagram, the circles with
centres P, Q and S all have radius 1.
Each is tangent to two sides of the
isosceles A ABC and to the circle with
centre R; the circle with centre P is
tangent to both of the other circles of

radius 1. What is the radius of the cir- B
cle with centre R?
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Polya’s Paragon
Now You See It, Now You Don’t

Jeff Hooper

I'm sure you learned the knack of cancelling at some point. In fact,
cancelling has probably become so second-nature that you do it quite without
thinking about it. For instance, in a sum like 2 —3x 432 —1 or a fraction like

g, eliminating the 3z terms from the sum or the factor 7 from the numerator

and denominator of the fraction is almost automatic.

Cancelling can be of great benefit in solving problems, but sometimes
it can hide some of the structure of a problem from us. No doubt you have
already encountered one way this can happen, namely, the technique of
completing the square.

For example, suppose we are asked to show that the expression
x? —x 4+ % is positive for all real z. Completing the square undoes some
simplifying to show that

Poati =t -2(G@) il = (@-3) 4

The right side can never be less than 1/4, since the square is non-negative. In
this case, inserting some additional terms allows us to rewrite the expression
in a way which is more appropriate to the problem.

Problem 1. Show that for any positive real numbers x and y,
42’ +9y%) > (z+y)°.

Solution 1: It’s tempting to expand the right side here and work with the
resulting expression:

4(z® +y®) > 2+ 32%y + 3zy® +4°.

This can work, but again the resulting cancelling can sometimes eliminate too
much.

We’ll take another approach. The important idea here is that the ex-
pression x3 + y3 actually factors into (z + y)(z? — zy + y?). (Check that!)
Using this factorization and cancelling a factor (x + y) from each side (so
we’ve temporarily assumed that z # —y), we can rewrite the inequality as

4(z® —zy +y?) > (z+y)?,

or, after simplifying,

3z%2 — 6xzy + 3y% > 0.
Since this is equivalent to 3(x — y)2 > 0, we have reduced the inequality to
something that must always hold. Thus, as in the first example, in a sense
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we have unsimplified part of the expression in order to obtain our solution.
[Strictly speaking of course, to finish up this problem, we need to show that
these steps are all reversible, and take care of the assumption we introduced,
but 1 will leave that for you.]

Sometimes there can be a great deal of potential cancelling in an ex-
pression, even if at first it is not obvious.
For example, consider the following sum:

1000
3 (- )
= k E+1

It is tempting to simplify the expression in brackets by combining the two
terms, but that gets us nowhere quickly; although each expression reduces
to a term which is not complicated, we still need to add 1000 such terms! In
this case, it is far easier to write out the sum:

1 1 1 1 1 1 1 1 1 1
(I B 5) + (5 - 5) + (5 B Z) Tt (@ - 1000) + (1000 - 1001)'
Now you can see that the two 1/2s cancel, as do the two 1/3s, the two 1/4s,

and so on, up to and including the two 1/1000s. The entire sum collapses
leaving only the first and last terms. So we see that

1000

1 1 1 1000
S ) = =
= k k+1 1001 1001

A sum such as this is called a telescoping sum, since this collapsing is a
little like the way the sections of a small telescope collapse into one another.
We will have a similar collapse with any sum that has the form

n

> (F(k)— F(k+1)) or i (F(k+1) — F(k)),
k=1

k=1
where F(k) is some function of k. If we write this out in the longer form,
the negative term in one bracket cancels with the positive term in the next.
The real power of this kind of cancellation shows itself when a more
complicated expression can be rearranged into a telescoping form, as in the
next example.

Problem 2. Compute the sum
= k(k+1)
This is again a large sum, but its terms certainly do not have the form

F(k) — F(k + 1). Or do they? We need to put our simplification hat on
backwards here (like we did earlier) and pull this term apart. We get

1 (k+1)—k k41 k 1 1

k(k+1)  k(k+1)  k(k+1) k(k+1) k k+1°
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Now, proceeding as in our example above, we get

2007 2007
2#22(1_1):1_L:M
= k(k+1) = E k+1 2008 2008 °

A similar idea applies to products. The standard notation for products
n

in mathematics is ][] ag, which represents the product a;azas---a,. An

k=1
. . 20 41 .
expression like ] can be written out as
k=1

20

Hﬂ — 2,342 21
E 1 2 3 19 20°

k=1

(Note that the last factor in the product has £ = 20 in the denominator.) This
time the cancelling is even easier to see, and we wind up with the answer 21.
We will have a similar collapse with any product that has the form

n

Fk+1) . “r F(k)
kl;[l F(k) kl;[l (k+1)

where, as before, F (k) is some function of k. 1f we write out the product in
the longer form, the numerator in one bracket cancels with the denominator
in the next (or vice versa).

In dealing with such sums and products, the main difficulty is often
rearranging everything into the correct form.

I'll close with a few problems for you to try yourself. (The last one will
require at least one trigonometric identity.) You might even look through
this month’s Mayhem problems too!

1. Show that for any positive integer n, the value of n” — n must always
be a multiple of 7.

2. Find the sum
1 + 1 + 1 +...+ 1
\/T—}—\/g \/§—|—\/§ \/g—i—ﬁ 2005 + 2007'

3. Find the product

100
k4 4k 44

—
AL k2 3k 42

4. Simplify the expression

tanl tan 2 tan4 + tan 128

cos 2 cos 4 cos 8 cos 256 °

Y WSS L W
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THE OLYMPIAD CORNER
No. 265

R.E. Woodrow

We begin this number of the Corner with the problems of the XXV
Brazilian Mathematical Olympiad 2003, as translated by John Scholes (with
minor edits). Thanks go to Christopher Small for collecting them for our use.

XXV BRAZILIAN MATHEMATICAL OLYMPIAD 2003

1. Find the smallest positive prime that divides n? + 5n + 23 for some
integer n.

2. Let S be a set with n elements. For a given positive integer k, for any
distinct subsets A;, A5, ..., A; of S, and for each z, 1 < 7 < k, choose
B; = A; or B; = S — A;. Find the smallest k£ such that we can always

choose B; sothat (J B; = S.
1<i<k

3. Let ABCD be a rhombus. Let E, F, G, and H be points on the sides
AB, BC, CD, and DA, respectively, so that EF and GH are tangent to
the incircle of ABCD. Show that EH and F'G are parallel.

4. Given a circle and a point A inside the circle, but not at its centre, find
points B, C, and D on the circle which maximize the area of the quadrilateral
ABCD.

5. Let f(x) be a real-valued function defined on the positive reals such that

() f(x) < f(y) ifx <y, and

. 2zy \ _ f(=)+ f(y)
(i) f <m+y> = 5 for all x.

Show that f(x) < 0 for some value of x.

6. A graph G with n vertices is called great if we can label each vertex with a
different positive integer not exceeding |n2/4] and find a set of non-negative
integers D so that there is an edge between two vertices if and only if the
difference between their labels is in D. Show that if n is sufficiently large,
we can always find a graph with n vertices which is not great.

—_— N r————



411

Next, we give the problems of the first, second and third selection tests
of the Republic of Moldova for IMO 2004. Thanks again go to Christopher
Small, Canadian Team Leader to the IMO in Athens, for collecting them for
our use.

2004 REPUBLIC OF MOLDOVA
First Selection Test

1. Suppose that the positive integer n has distinct representations as a sum
of two squares of positive integers: n = a? + b? = ¢? + d?. Prove that n is
a composite number.

2. In a tetrahedron ABCD, let r be the radius of the inscribed sphere, and
let r4, 7B, 7c, and rp be the radii of the spheres that are tangent to the
faces of the tetrahedron and to the extensions of the other faces. Prove the
inequality

1 1
Vri —rarg+1%  \/ry —rprc + 12
" 1 1 2
VrE —rerp+714  \/rE —rpra+r3 r

For what kind of tetrahedron does equality hold?

3. The circles T'; and I'; intersect each other at M and N. A straight line
passing through M intersects the circle I’y at A # M and the circle T'; at
B # M, such that M € AB. The internal bisector of the angle AMN
meets the circle T'; in the point D, and the internal bisector of the angle
BM N meets the circle I'; at C. Prove that the circle with CD as diameter
passes through the mid-point of the segment AB.

4 1etnbea positive integer and A = {a1, a2, ..., a,} be a set of real
numbers. Find, in terms of n, the total number of functions f : A — A with
the property f(f(z)) — f(f(y)) > @ —yforany z, y € Awithz > y.

Second Selection Test

5. Let n be a positive integer, and let
A = {(z1,22y. .., Tn) | ; €ERY,i=1,2, .o, m}.
A function f : A — R is defined as follows: for all (1, z2,...,z,) € A,

1 1 1 1 1
f(.’Bl,.’Bz,...,.’Bn) = — 4 — 4+ — 4 .-+

r1 22 3x3 (n—1xp_1 nz,

Show that f(C},,C%,...,CR) = f(2n~1,2"=2,...,2,1), where CF is the
number of k-element subsets of an n-element set, fork =1, 2, ..., n.
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6. Find all functions f : R — R which satisfy the relation

f@*) —f(¥®) = (&®+=zy+9°)(f(=) - F(v))
for all real numbers z and y.

7. Let ABC be an acute-angled triangle with orthocentre H and circum-
centre O. The inscribed and circumscribed circles have radii » and R,
respectively. If P is an arbitrary point of the segment [OH], prove that
6r < PA+ PB + PC < 3R.

8. An integer n is said to be good if |n| is not the square of an integer.
Determine all integers m with the following property: m can be represented
in infinitely many ways as a sum of three distinct good integers whose product
is the square of an odd integer.

Third Selection Test

9. rorall positive real numbers a, b, and ¢, prove the inequality

4(a® — b®) 4 4(b* — c®)  4(c® —a®)

< —b)? b—c)? —a)?.
a+b b+ c c+a < (a )"+ ( )" +(c—a)

10. Determine all the polynomials P(X) with real coefficients which satisfy
the relation

(2® + 32 + 3z + 2)P(x — 1) = (2® — 32> + 3z — 2) P(x)
for every real number z.

11. Let ABC be an isosceles triangle with AC = BC, and let I be its
incentre. Let P be a point on the circumcircle of the triangle AIB lying
inside the triangle ABC'. The straight lines through P parallel to C A and
CB meet AB at D and E, respectively. The line through P parallel to AB
meets CA and CB at F and G, respectively. Prove that the straight lines
DF and GE intersect on the circumcircle of the triangle ABC.

12. Let ay, be the number of integers n that satisfy the following conditions:

(@) n € [0,10%); that is, n has exactly k digits (in decimal notation) with
leading zeroes allowed;

(b) the digits of n can be permuted in such a way that they yield an integer
divisible by 11.

Prove that a3,, = 10as,,_, for every positive integer m.

—_— N r————
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Now we give the problems of the Sixth Hong Kong (China) Mathemat-
ical Olympiad, written December 20, 2003. Thanks again go to Christopher
Small for collecting them for the Corner.

SIXTH HONG KONG (CHINA) MATHEMATICAL
OLYMPIAD
December 20, 2003

Time: 3 hours

1. Find the greatest real number K such that, for every positive u, v, and
w with u? > 4vw,

(u2 — 4vw)2 > K(Zv2 — uw) (2w2 — uv) .

Justify your claim.

2. Let ABCDEF be a regular hexagon of side length 1, and let O be the
centre of the hexagon. In addition to the sides of the hexagon, line segments
are drawn from O to each vertex, making a total of twelve unit line segments.
Find the number of paths of length 2003 along these line segments that start
at O and terminate at O.

3. Let ABCD be a cyclic quadrilateral. Let K, L, M, and N be the mid-
points of sides AB, BC, CD, and DA, respectively. Prove that the or-
thocentres of triangles AKN, BKL, CLM, and DM N are vertices of a
parallelogram.

4 Find, with reasons, all integers a, b, and c such that
s(a+b)(b+c)(ct+a)+(a+b+c)® = 1—abc.
%

As a fourth set of questions, we give the Final Round of the Swedish
Mathematical Contest 2003/2004. Thanks again go to Christopher Small for
obtaining them.

SWEDISH MATHEMATICAL CONTEST 2003-04
Final Round
November 22, 2003 Time: 5 hours No aids allowed.

1. The numbers x, y, z, and w are all non-negative. Determine the smallest
value of = such that the following relations hold:

y = x— 2003, 1
z = 2y — 2003, 2)
w = 3z —2003. 3)

What are the corresponding values of y, z, and w?
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2. 1n a lecture hall, some chairs are placed in rows and columns, forming a
rectangle. There are 6 boys in each row and there are 8 girls in each column,
while 15 chairs are not occupied. What can you say about the number of rows
and the number of columns?

3. Find all real numbers x which satisfy the equation
|2? — 2z| +2|z] = |=]?.

Here |a] denotes the integer part of a (the largest integer not exceeding a).

4. Determine all polynomials P with real coefficients such that
14 P(x) = %(P(a: — 1)+ P(x + 1))

for all real =.

5. Given two positive real numbers a and b, how many (non-congruent)
plane quadrilaterals ABC D are there such that /B = 90°, AB = a, and
BC =CD = DA =b?

6. Consider an infinite lattice of identical squares with an integer written in
each square. Assume that, for each square, the integer within it is equal to
the sum of the integer immediately above it and the integer immediately to
the left of it. Assume also that there exists a row R, in the lattice such that
all numbers in Ry are positive. Denote by R; the row below Ry, by R, the
row below Ry, etc. Show that, for each NV > 1, the row Ry cannot contain
more than N zeroes.

_—_—m NS —e————

As a final set of problems to whet your problem-solving skills, we give
the German Mathematical Olympiad, Final Round, Grades 12-13. Thanks
once more to Christopher Small for collecting them.

2004 GERMAN MATHEMATICAL OLYMPIAD
Final Round, Grades 12-13

1. Determine all pairs (z, y) of real numbers x and y which satisfy

$4+y4 = 17(a:+y)2,
zy = 2(x+vy).

2. Let k be a circle with centre M. On k lies the point M, which is the
centre of another circle k;. Denote by g the line through M and M;. The
point T lies on the circle k; in the interior of k. The tangent line ¢ to k; at
T intersects the circle k£ in the points A and B. Let a and b be the tangent
lines to k; through A and B, respectively, which are different than ¢. Prove
that either g, a, and b all intersect in a common point or they are parallel.
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3. Prove that for any positive integer n, there is a positive integer z satis-
fying the following conditions:

(i) The number z has exactly n digits.
(ii) No digit of = equals 0.

(iii) The number z is divisible by the sum of its digits.

4 For any positive integer n, let a,, denote the integer closest to /7.
Determine

5. Prove that, for any positive real numbers a, b, c, d,
a4+ b2 +c+d® > a’b+ b3c+ PAd+ d3a.
Determine when equality occurs.

6. A point (x,y) is called a lattice point if both = and y are integers.
Determine (with proof) if there is a circle in the plane which contains exactly
5 lattice points.

—_—— S ———

Now we give a non-trigonometric solution for a problem from the
Hungarian Mathematical Olympiad 2002-2003, discussed earlier this year
[2006 : 150; 2007 : 161].

3. Let ABCbhea triangle. We drop a perpendicular from A to the internal
bisectors starting from B and C, their feet being A; and A,. In the same
way we define By, B, and C;, C5. Prove that

Alternate solution by ]. Chris Fisher, University of Regina, Regina, SK.
We shall see that
A1A2=s—a, B]_BzZS—b, C’lszs—c,

where s is the semiperimeter of AABC and a, b, c are the sides. Then it
will follow at once that

2(A1A2 + B1B, + C1C3) = 2(s—a+s—b+s—c) = 2s,

which is the desired result.
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To this end, we denote the incentre (where BA; intersects CAy) by I
and look at the circle on diameter AI. Because of the right angles at A; and
A,, the quadrangle AA,I A, is cyclic; whence, LZA;AA, = ZA,IB. This
last angle is an exterior angle of ABIC, so that

B C ™ A
ZAQAA:[ —_— ZAzIB — E+E —_— E—E.
Let G be the foot of the perpendicular from I to AC. Then ZGIA is
the complement of /I AG in the right triangle I AG, which implies that

Because G is the point where the incircle of A ABC touches the side AC,
we have AG = s — a. Furthermore, AI subtends the right angle at G,
so that G is another point on the circle AA;TA;G whose diameter is ATI.
Because the inscribed angles ZA;AA; and Z/GIA are equal, the chords that
subtend them, namely A; A; and AG must have the same length; that is,
A{A; = s —a as claimed. Similarly BBy = s —band C;C> = s — ¢, which
completes the proof.

A
G
‘N M
T
B D

A

(o

Comment. Compare this problem with the result discussed by Bruce
Shawyer in his Mayhem article “Remarkable Bisections” [2006 : 434-435].
Shawyer proved that the line A; A, is the perpendicular bisector of the
altitude AD. As a consequence A; A, is the line joining the mid-points M
and N of the sides AB and AC. An easy way to see this is to note that the
circle whose diameter is AC (with centre M and radius M A) passes through
A, and D; the bisector of ZAC D meets the perpendicular bisector of AD
(namely M N) at the point A, of the circle.
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Now we turn to solutions from our readers to problems given in the
November 2006 number of the Corner and the problems of Category A of the
Belarus Mathematical Olympiad 2002, Final Round, given [2006 : 436—437].

2. (D. Bazylev) Let
P(x) = (z+1)P(x—3)9 = ="+ a1z a2+ Fan_1x+an,
where p and g are positive integers.

(a) Given that a; = as, prove that 3n is a perfect square.

(b) Prove that there exist infinitely many pairs (p, q) of positive integers p
and q such that the equality a; = a is valid for the polynomial P(x).

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Ioannis Katsikis,
Athens, Greece. We present the solution of Bornsztein.

(a) The roots of P(x) are evidently —1 and 3, with respective multi-
plicities p and g (Where p + q = n). Denote these roots by ry, r2, ..., 7y,
wherery =r; =---=rp=—-landrpy1 =rpj2 =+ =71, = 3.

Using the well-known relations between roots and coefficients, we have

o

r; = —a7 and > rirj = a2. On the other hand, using the known
1 1<i<j<n

(2

n
values of the roots, we obtain >  r; = —p + 3¢ and
=1

p q
> rry = (5) 02+ pa-0@) + (3) 6
1<i<j<n
= 3p(p—1)—3pg+ 3q(g—1).
Thus,
apg = p—3q and ay; = ip(p—1)—3pg+ 3q(g—1).
Therefore, a; = a- if and only if
p® —3p—6pqg+9¢> —3q = 0. )

From (1), we deduce that p is divisible by 3, which in turn forces g to be a
multiple of 3. Let p = 3a and q = 3b.

Thus, a1 = a- if and only if a® — a — 6ab + 9b% — b = 0, which is
equivalent to (a — 3b)2 = a + b. It follows that a; = a if and only if
3n = 9(a + b) = 9(a — 3b)?, and we are done.

(b) From above, a; = as if and only if (a — 3b)%2 = a+ b, where p = 3a
and g = 3b. Let a — 3b = =. Then a; = a, if and only if
(a,b) = Cz(z+1),32(x—1)) . 2

Since a and b are positive integers, we choose any positive integer ¢ and,
letting = = 4t in (2), we deduce that, for (p,q) = (36t + 3t,12t2 — 3t),
the polynomial P(z) satisfies a; = as.
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4 (V. Kolbun) Positive numbers a;, as, ..., a, and by, by, ..., b, satisfy
the conditionay +as +---+a, =b;y +by++---+b, = 1.
Find the smallest possible value of the sum

a? 4 a2 4 4 a?
a; +b; az + by an + by

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s version.

Let S be the given sum. We prove that the smallest value of S is %

Since § = 1 fora; =b; = £ (i =1, 2, ..., n), the proof will be complete if
we show that § > 1.
Let
a1by asbo anby,
" a1+bi az+bs an + by
Note that, for: =1, 2, ..., n,

ibs i+ b;
a < a; +
a; —+ bi - 4

’

since (a; + b;)? — 4a;b; = (a; — b;)? > 0. Therefore,

1

T < ) (aitb) = o
=1

I

Now

N | =

n aibi
S = i — =1-T >
;(:h ai+bi) N

6. (A. Romanenko, D. Zmeikov)

(a) A positive integer is called nice if it can be represented as an arithmetic
mean of some (not necessarily distinct) positive integers each of which
is a non-negative power of 2.

Prove that all positive integers are nice.
(b) A positive integer is called ugly if it cannot be represented as an

arithmetic mean of pairwise distinct positive integers each of which is
a non-negative power of 2.

Prove that there exist infinitely many ugly positive integers.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

(a) For each positive integer k, let A3, be the set of all the nice positive
integers which can be represented as an arithmetic mean of 2% positive
integers each of which is a non-negative power of 2. Let N' = |J Np. We
will prove that A/ = IN*, k21
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Lemma 1. For each k > 1, we have NV}, C Ny11-

Proof: This follows from the equality

Y2 Y2r+y?

2k 2k+1 !

where each of the sums has exactly 2 summands. [ ]
Lemma 2. If z, y € M thenxz +y € N.
Proof: Using Lemma 1, we may find k£ > 1 such that z, y € N;. Let

> 2 > 2
= and ¥y =
where each of the sums has exactly 2 summands. Then

20 327 20+ 4 32+t
zt+y = 2 ZkZ = 2 2k+12 € Nk+1 - N . u

xTr

)

We have 1 = % € N. Using Lemma 2, we deduce that if z € A, then
x + 1 € N. Then, by induction, N/ = IN*.

(b) Let U be the set of all ugly positive integers.
Lemma 3. For any positive integer n, we have n € U if and only if 2n € U.

Proof: We will prove that n ¢ U if and only if 2n & U.

First, suppose n ¢ U. Then n = % 3" 2¢ for some set I C IN with
i€l

_ 1 i1
2n = EZz ,
iel

|I| = k. Thus,

so that 2n & U.

Now suppose 2n ¢ U. Then 2n = % >~ 2t for some set I C N with

el
|I| = k. Since the exponents are distinct, it follows that at most one is 0;
hence, at most one of the numbers 2? which appear in the sum is odd. But
the whole sum has to be even. Thus, none of the exponents is 0. Therefore,
each of the exponents is at least 1. Then n = % Y271 and n € U. [
el

It follows from Lemma 3 that we only have to find one ugly number,
say x, because for such a number we deduce that 2Pz is ugly for each non-
negative integer p.

We now show 13 is ugly.

Assume, for a contradiction, that 13 ¢ 4. Then there exist k € IN* and
I C N with |I| = k such that

13k = ) 2°. 1)
i€l

It follows that 13k > 1 4+ 2 + ... 4 2*—1 = 2k _ 1. But, a straightforward
induction shows that 2® — 1 > 13n for all integers n > 7. This gives k < 6.
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Since the exponents in (1) are distinct, equation (1) is the binary expan-
sion of 13k. One can now verify that, for each k¥ = {1, ..., 6}, the binary
expansion of 13k does not have exactly k£ non-zero digits, which leads to the
desired contradiction.

7. (E. Barabanov) Does there exist a surjective function f : R — R such
that the expression f(x + y) — f(x) — f(y) takes exactly two values 0 and
1 for various real = and y?
Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Yes. For example, let

T ifx <0
F@) = {az—l if z > 0.

Then f is clearly surjective. Now take any = < y.

)1z <y<o then f(z +y) =z +y = f(z) + F()-
(i)Ifz<0<yandz+y <0, then f(x+y) =z+y=f(z) + fy) + 1.
(i) fz<0<yandxz+y >0,then f(z+y)=xz+y—1= f(z)+ f(y)-
(V)10 <2 <y then fle+y) =a+y—1=f(a)+ f(y) + L.

8. (I. Voronovich) Find the area of the convex pentagon ABCDE, given
that AB = BC, CD = DE, ZABC = 150°, /CDE = 30°, and BD = 2.

Solved by Michel Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT,
USA; and loannis Katsikis, Athens, Greece. We give Kandall’s write-up.

Lletp = AB = BCand q = CD = DE. letr = AC, s = CE, and
6 = ZACE. From the given information, we see that ZACB = 15° and
/DCE = 75°. Then r = 2pcos 15° and s = 2q cos 75° = 2qsin 15°. Thus,
rs = 2pq-2sin 15° cos 15° = 2pq sin 30° = pq. By applying the Cosine Law
to ABCD, we get

4 = p? 4 q*® — 2pqcos(6 + 90°) = p? + q°® + 2pqsing.
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Consequently,

[ABCDE| = [ABC|+ [CDE]+ [ACE]
%pz sin 150° 4+ %qz sin 30° 4 %rs sin 6
i(p2 + g% + 2pgsin @) = %(4) = 1.

—_—— N r——— S ———

Now we turn to some solutions to problems from Category B, Belarus
Mathematical Olympiad 2002, Final Round given at [2006 : 437-438].

4 (1. Voronovich) Pairwise distinct positive integers a, b, ¢, d, €, f, g, h,
and n satisfy the equalities n = ab + cd = ef + gh.
Find the smallest possible value of n.

Solved by loannis Katsikis, Athens, Greece.

The smallest possible value of n is 47.

The idea is to use numbers as small as possible; that is, the numbers 1,
2, 3, 4, 5, 6, 7, trying to find numbers which can be expressed twice in the
form of a product of two factors.

Wehave12=2-6=3-4and35=5-7=1-35

Thus, if wetakea =2, b=6,c=5,d=7,e=3, f =4,g =1, and
h = 35, then, for n = 47, we have n = ab + c¢d = ef + gh.

5. (I. Voronovich) The quadrilateral ABCD is cyclic and has the property
that AB = BC = AD+ CD. Given that /ZBAD = « and that the diagonal
AC = d, find the area of the triangle ABC.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; and Geoffrey A. Kandall, Hamden, CT, USA. We
give the solution by Bataille, modified by the editor.

We will show that [ABC] = 1d®sina D
(here and in what follows, [-] denotes area). A & C
Lleta = AB = BC = AD + CD and d
0 = ZLABC. Then
[ABCD]
= [DAB]+ [DCB]|
= 1AB-ADsina+ ;BC-CDsina o
1a(AD + CD)sina = 1a’sina B
and

[ABCD] = [ABC]+[ADC] = ;AB-BCsin6+ 1AD-CDsin6
= 1(a®>+ AD-CD)sin6
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Thus,
a’sina = (a®+ AD-CD)sin6. ¢))

By the Law of Cosines,
d> = AB? + BC?> —2AB-BCcos0 = 2a°*(1 —cos#);
that is, 2(1 — cos8) = d?/a?. Also,

d*> = AD?*+CD?+2AD-CDcos#
= (AD+CD)?>-2AD-CD(1 —cos@) = a®> — AD-CD(d*/a?),

which implies that a2 + AD - CD = a?*/d?. Using this result in (1), we get
a’?sina = (a*/d?) sin 0; that is, d® sina = a?sin 6.
Finally, [ABC] = 1 AB - BCsin6 = 1a®sinf = 1d*sina.

[Ed.: What is the answer if the quadrilateral is non-convex?]
—_— e~~~ ——

Next we look at solutions from our readers to problems of Category C,
Belarus Mathematical Olympiad 2002, Final Round, given at [2006 : 439].

1. (A. Mirotin) (a) There are k > 3 positive integers such that no two
of them are coprime while any three of them are coprime. Determine all
possible values of k.

(b) Does there exist an infinite set of positive integers satisfying the
same condition?

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

(a) This is possible for each & > 3.

Let p1, p2, ..., Pn, --. be the sequence of primes, in increasing order.
Let & > 3 be an integer.

Write in a row all the pairs (z,7) for 1 < 7 < j < k, and label them
1,2, ..., k(k — 1) from left to right. Fori € {1, ..., k}, let =; be the
product of all the primes p,, for which n is the label of a pair containing 7.

Ifi,j € {1,..., k} with¢ < j, then z; and =; have the common factor
pr, Where r is the label of the pair (¢, j); thus, «; and xz; are not coprime.
On the other hand, p, divides none of the other numbers x4, ..., x; thus,
any three of these numbers are coprime.

(b) No, there is no infinite set satisfying the condition.

Assume, for a contradiction, that {z1, x2, ...} is such an infinite set.
The number z; has a finite number of prime divisors. For at least one of
these divisors, say d, we must have gcd(z1,z;) = d for infinitely many
j (because x; is not coprime with any of the other z;s). Without loss of
generality, we assume that d = gcd(x1,z2) = ged(xy, x3). It follows that
ged(xy, z2,3) = d > 1, which contradicts the condition that any three of
the x;s are coprime.
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2. (I. Zhuk) Prove that a right-angled triangle can be inscribed in the parabola
y = x2 so that its hypotenuse is parallel to the x—axis if and only if the
altitude from the right angle is equal to 1. (A triangle is inscribed in a
parabola if all three vertices of the triangle are on the parabola.)

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; and
Michel Bataille, Rouen, France. We give Bataille’s solution, modified by
the editor.

Let ABC be a triangle with Z/A = 90°, placed so that the hypotenuse
BC is parallel to the z-axis and the vertices B and C' lie on the parabola
y = x2. Suppose that the coordinates of B are (b, b2), where b > 0. Then
the coordinates of C are (—b, b?). Let (zo, yo) be the coordinates of A.

— —
Note that AB = [b — z¢, b% — yo] and AC = [—b — x¢, b% — yo]. Since
—_— — .
/A = 90°, we have AB - AC = 0; that is,

x3 —b? + (b? —yo)® = 0. M

If AABC is inscribed in the parabola y = x2, then A lies on the
parabola, which implies that yo = 2. This, together with (1), gives
Yo — b2 + (b% — yo)%2 = 0, or (b% — yo)(b®> — yo — 1) = 0. Since b? # yo, We
obtain b? — yo = 1, which means that the altitude from A is equal to 1.

Conversely, if the altitude from A is equal to 1, then 8% — yo =
Setting b*> = yo + 1 in (1), we obtain 22 — (yo + 1) + 1 = 0, or yo = 2.
Thus, A lies on the parabola and A ABC is inscribed in the parabola.

N =

3. (I. Zhuk) The diagonals A; A4, A3 As, and A3z Ag of the convex hexagon
A1A2A3A4A5A6 meet at a pOint K. Given that A, A, = A2A3 = AzK,
AyA3 = A4A5 = A4K,and AgAs = AgA; = AgK, prove that the hexagon
is cyclic.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

We first observe that A, A, is the
perpendicular bisector of K A3, A Ag is
the perpendicular bisector of KAs, and
AgA, is the perpendicular bisector of
KA,. Let the points at which these per-
pendicular bisections occur be denoted by
P, Q, and R, respectively. Then

As

AAPA; & AAPK ~ AAGQK .

Thus,

ZA3A6A4 = ZA5A2A4 = ZA3A2A4.
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Hence, the quadrilateral A; A3 A4Ag is cyclic; that is, Az lies on the
circumcircle of AA; A4 Ag. Similarly, A5 and A, lie on the same circumcircle.
Therefore, the hexagon is cyclic.

6. (A. Shamruk) Distinct points Ag, A;, ..., A1000 On one side of an angle
and distinct points By, B, ..., Bigoo on the other side are spaced so that
AgAy = A1Ay = -+ = AgggAi000 and BoBy = B1B3 = -+ = BgggB1000-
Find the area of the quadrilateral AgggA1000B1000Bogs if the areas of the
quadrilaterals Ag A, BBy and A, A, B3 B, are equal to 5 and 7, respectively.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.

r Ap @ A, a A, An,_1a A,

Let P denote the vertex of the angle, and let r = PAg, a = ApA,,
s = PBg, b= ByB,,Y = [PAOB()], and X, = [A'n,—lAanBn—l]v where
[-] denotes area, as usual. Furthermore, set @« = a/r and 8 = b/s. We have

Xn [PAan] [PAn—an—l]

Y Y Y
(r + na)(s + nb) _ (r+ (n—1)a)(s+ (n — 1)b)

= 14+na)(1+n8)— 1+ (n—1)a)(1+ (n—1)3)
= a+B8+ (2n—1)as;

thatis, X,, = («+8+(2n—1)aB)Y. Consequently, X,,+1 — X,, = 2a83Y.
Thus, X;, X5, X3, ... is an arithmetic progression.

In the case where X; = 5 and X5 = 7, the common difference is 2;
therefore, X000 = 5 + 999 - 2 = 2003.

7. (1. Voronovich) A quadrilateral ABCD is cyclic with AB = 2AD and
BC = 2CD. Given that ZBAD = «, and diagonal AC = d, find the area
of the triangle ABC.
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Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain; Michel
Bataille, Rouen, France; Geoffrey A. Kandall, Hamden, CT, USA; and loannis
Katsikis, Athens, Greece. We give the solution of Bataille.

Note that A and C lie on the circle consisting A

of all points P such that PB = 2PD, which is
centred on the line BD. It followsthat Aand C g
are on opposite sides of BD (otherwise, we would D
have A = C); that is, ABC D is convex.

Denote area by []. We will show that
[ABC] = %d2 sin .

First,

[ABC] = 1BA.BCsin/ABC = 2AD-CDsin /ADC = 4[ACD];

thus,
4
[ABC] = $[ABCD]. 1)
Now,
[ABCD] = [ABD]|+ [DCB] = ;AB-ADsina+ i1CB-CDsina

(AD? + CD?)sina. (2)
From the Law of Cosines, we have

d*> = AD?+ CD? —-2AD-CDcos/ADC

and also
d*> = AB?+ BC?—-2AB-BCcos ZABC

= 4AD? +4CD? +8DA - DC cos ZADC,

from which it readily follows that 8(AD? + CD?) = 5d?. With (1) and (2),
this immediately yields

[ABC] = £-3d? .sina = id’sina.

That completes the Corner for this time. Please send your nice
solutions and generalizations.
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BOOK REVIEWS
John Grant McLoughlin

Mathematical Delights

By Ross Honsberger, Mathematical Association of America, 2004
ISBN 088385-334-5, softcover, x + 252 pages, US$41.00.
Reviewed by Ed Barbeau, University of Toronto, Toronto, ON

There was a time when Ross Honsberger of the University of Water-
loo performed a mathematical concert at each annual meeting of the Ontario
Association for Mathematics Education. Eager mathematics teachers would
pack a large auditorium for a polished and witty exposition of about ten of
Honsberger’s favourite problems and their solutions, selected for their ele-
gance and capacity to surprise and delight. Those who show up at the annual
marking bee for the Waterloo contests still can enjoy such a treat.

These problems found their way into a succession of books published
by the Mathematical Association of America. No fewer than eleven of the
first twenty-eight volumes of the Dolciani Mathematical Exposition Series,
including the inaugural four and this one, are from his hand. That is a lot of
beautiful mathematics!

While his earlier books consisted of longer essays on individual prob-
lems, this one is a miscellaneous collection of problems from a variety of
sources, briefly treated. Demanding at most the background of a second-
year undergraduate, the author aims to “put on display little gems that are
to be found at the elementary level”. The first part of the book, Gleanings,
contains problems and solutions drawn from contests like the Putnam,
journals like Mathematics Magazine and The College Mathematics Jour-
nal, and published collections of problems. The second part, Miscellaneous
Topics, focuses on the work of particular correspondents (Liong-shin Hahn,
Achilleas Sinefakopoulos and George Evagelopoulos) and problems from
particular sources (New Mexico Mathematics Contest of 2002, and The Book
of Prime Number Records by Paulo Ribenboim). Finally, just to make sure
the reader is not content to be a spectator, Honsberger poses 27 challenges,
with solutions provided in a separate section.

As you would expect, the problems are drawn from the standard
competition areas of number theory, combinatorics, algebra, and geome-
try. They are attractive for different reasons. Sometimes the result itself
surprises. (As Honsherger often asked in his lectures, “How does someone
think of such things?”) At other times, there is an unusual strategy lead-
ing to a straightforward dénouement. But the most satisfying solutions are
clever, unexpected, and brief. Sometimes a serious research problem has
such a solution. Witness this question of M.V. Subbarao of the Univer-
sity of Alberta: Are there r > 2 distinct odd primes py, p2, ..., pr and
an integer a for which (p; + a)(p2 + a)---(p» + a) — 1 is divisible by
(pr+a—1)(p2+a—1)---(pr +a—1)? A $100 award went to C. Offord



427

and R. Wentz for an almost trivial example where » = 2 and the primes are
twins.

In part, the book celebrates the human ingenuity that generated the
problems and solutions, the latter occasionally during a competition. For
example, the 1988 IMO problem to show that (a? + b2)/(ab + 1) is square
whenever a and b are integers for which ab 4 1 divides a? 4+ b? was a no-
toriously challenging one for which a Bulgarian student gave a prize-winning
solution during the competition.

The geometry problems are the most fun. There are a number of in-
triguing results about the sizes of circles inside an arbelos (a region bounded
by three tangent semicircles with a common diameter). From The College
Mathematics Journal come two short constructions for the tangent to an
ellipse from an exterior point.

The book has an index for names and another for terms, with each item
keyed to the section rather than the page containing it.

—_—_— N~ S ————

aha! A two volume collection

By Martin Gardner, Mathematical Association of America, 2006

ISBN 13: 978-0-88385-551-5, hardbound, 368 pages, US$47.50

Reviewed by Amar Sodhi, Sir Wilfred Grenfell College, Corner Brook, NL

As a teenager, I would eagerly look forward to reading the new Martin
Gardner book that came to the public library or bookstore. Each chapter
was taken from Gardner’s insightful column in Scientific American. 1 would
joyfully spend an hour or so to read and digest the material contained therein.

In the aha! series, however, paradoxes (in part 1) and puzzles (in part 2)
are presented in a series of vignettes. Each vignette is accompanied by a
cartoon strip which introduces the reader to the problem being discussed.

The topics touched on in this work will no doubt be familiar to the
older readers of CRUX with MAYHEM, but this does not matter. Gardner’s
inimitable style ensures that the knowledgeable reader can enjoy the book
as if it were a collection of much loved poems. Even a reader who has little
exposure to aha! aspects of mathematics may, like my wife and teenage
daughter, find this entertaining yet thought-provoking book hard to put down.

Originally published in separate volumes as: aha! Insight (W.H. Free-
man and Company, 1978) and aha! Gotcha (W.H. Freeman and Company,
1982), this welcome amalgamation of these classics makes for an ideal gift
for anyone, young or old, who has yet to discover Martin Gardner.

B SN D W



428

PROBLEMS

Solutions to problems in this issue should arrive no later than 1 May 2008. An
asterisk (x) after a number indicates that a problem was proposed without a solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8§,
French will precede English. In the solutions’ section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier of the University of Montreal for transla-
tions of the problems.

—_—m—m—— N r—— S —,—,—,——
3276. Proposed by Neven Juri€, Zagreb, Croatia.

A sequence {a,}$2 , of positive real numbers satisfies the recurrence
relation ay4+3 = any1 + a, for n > 0. Simplify

2 2 2 2 2
\/an+5 ‘anstag3—an ,ta; ,— a? .

3277. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, M1, USA.

The Lucas numbers L,, satisfy the recurrence relation Ly = 2, L, = 1,
and L,,y2 = L,41 + L, for n > 0. Let k be an even positive integer. Find

lim ({ \'“/L_n} — {\’“/Ln—k + {c/L'n,—Zk:}) )

n—o0

where {z} is the fractional part of = (that is, {x} = « — |=|, where |z] is
the integer part of x).

3278. Proposed by Virgil Nicula, Bucharest, Romania.

Let P be a point in the plane of AABC such that PC = PB and
PA = AB. Let x be the measure of /ZPBC'. Prove that

sin(B — C) = 2sinC cos(B + 2ex) ,

where ¢ = 1 if the line BC separates the points P and A, and ¢ = —1
otherwise.

3279. Proposed by Virgil Nicula, Bucharest, Romania.

Let O, I, R, and r be the circumcentre, incentre, circumradius, and
inradius of AABC, and let a, b, and c be the lengths of the sides of AABC
opposite the angles A, B, and C, respectively. Let IO meet the lines AB
and AC at M and N, respectively. Prove that the points B, C, M, and N
are concyclic if and only if h, = R + r (where h, is the altitude to the side

1 1

. . 1
B and, in this case, we also have —— = =
C)' ! ! MN a + b+c
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3280. Proposed by Virgil Nicula, Bucharest, Romania.

Let O and R be the circumcentre and circumradius, respectively, of
ANABC. lLet E and F be points on AB and AC, respectively, such that O
is the mid-point of segment EF. Let A’ be the point where the line AO
meets the circumcircle T' of A ABC a second time, and let P be the point on
the line EF such that A’P 1 EF. Prove that the lines EF, BC, and the
tangent line to I" at A’ are concurrent, and that /Z/BPA’ = ZCPA’.

3281. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain and Pantelimon George Popescu, Bucharest,
Romania.

Let a4, as, ..., a, be positive real numbers. Prove that

(Ze) = L(Z)

k=1 k=1

3282. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain and Pantelimon George Popescu, Bucharest,
Romania.

Let A(z) be a polynomial of degree n with complex coefficients.
Suppose the zeroes z;, za, ..., z, of A(z) are distinct non-zero complex
numbers. Prove that

ey 1

3 Rk — Zj
j#

N
S,
Eal

3283. Proposed by M.N. Deshpande, Nagpur, India.

Of the n! permutations o of (1,2,...,n), for how many is o2 the
identity permutation?

3284. Proposed by K.S. Bhanu and M.N. Deshpande, Institute of
Sciences, Nagpur, India.

Let z, y, and z be positive real numbers which satisfy =2 + y? = 22.

Construct a line segment AC with length 2. Let B be any point such that
BC = z and 90° < ZABC < 180°. Let M be a point on AC such that
/MAB = /ZMBC. Let D be the point on line BM on the opposite side of
AC from B such that AD = y. Show that ZADM = /DCM.

3285. Proposed by Gregory Akulov, student, University of Regina, Regina,
SK.

Solve the following for x:

w<¢3_2m+m+\/§> -2
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3286. Proposed by Neven Juri€, Zagreb, Croatia.
Is it possible to find a function f : [0,1] — R such that

f(z) = 1+x/0 f(t)dt—l—a:2/0 [£(8)]* dt?

3287. Proposed by Virgil Nicula, Bucharest, Romania.
Let x, y, and z be positive real numbers satisfying
zy +yz +zx +zzyz = 4.
Prove that
@ (242)(y+2)+ (Y+2)(z+2)+ (2+2)(@+2) = (2+2)(y+2)(=+2);
(b) there is a triangle whose sides have lengths (z+2)(y+2), (y+2)(2+2),
and (z + 2)(z + 2).

3288. Proposed by Ovidiu Furdui, student, Western Michigan University,
Kalamazoo, M1, USA.
Let n be a positive integer. Evaluate the sum:
n—1 .
I.i:J (n — = 1> 2n—27,—1
= i n—2i'

where | x| is the integer part of x.

3276. Proposé par Neven Juri¢, Zagreb, Croatie.

Sachant que la suite {a,}$° , de nombres réels positifs obéit a la rela-
tion de récurrence a,3 = ant1 + a, pour n > 0, simplifier

2 2 2 2 2
\/an+5 ‘anstagg—an ,tag ,— a? .

3277. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, M1, E-U.

Les nombres de Lucas L,, satisfont la relation de récurrence Ly = 2,
Ly = 1,et Lyy2 = Ly,y1 + L, pour n > 0. Soit k un entier positif pair.

Trouver
Jim ({YIn} = {VTnx + YTnar}),
ou {x} est la partie fractionnaire de = (c'est-a-dire, {x} = = — |z], ou |z]
est la partie entiére de x).
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3278. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit P un point dans le plan du triangle ABC tel que PC = PB et
PA = AB. Soit x la mesure de ’angle PBC'. Montrer que

sin(B — C) = 2sinC cos(B + 2&ex) ,
ol € = 1 si la droite BC sépare les points P et A, et e = —1 sinon.

3279. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit respectivement O, I, R et r les centres et rayons des cercles cir-
conscrits et inscrits du triangle ABC, et a, b et c les longueurs des cotés
du triangle ABC opposés aux angles A, B et C. Désignons par M et N
les points ot 7O coupe les droites AB et AC. Montrer que les points B,
C, M et N sont sur un méme cercle si et seulement si h, = R + r (ot

h, est la hauteur abaissée sur le coté BC) et que, dans ce cas, on a aussi
1 1 1

MN o T bye

3280. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit respectivement O et R le centre et le rayon du cercle circonscrit
au triangle ABC. Soit E sur AB et F sur AC deux points tels que O soit le
milieu du segment EF. Soit A’ le point ot AO coupe le cercle circonscrit '
du triangle ABC une deuxiéme fois, et soit P le point sur la droite EF tel
que A’P 1 EF. Montrer que les droites EF, BC et la tangente 3 T en A’
sont concourantes, et que /BPA’ = /CPA’.

3281. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne et Pantelimon George Popescu, Bucarest,
Roumanie.

Soit a4, as, ..., a, des nombres réels positifs. Montrer que

(2] = H(X4)

k=1

3282. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne et Pantelimon George Popescu, Bucarest,
Roumanie.

Soit A(z) un polyndme de degré n 3 coefficients complexes. Supposons
que les zéros 2y, 22, ..., 2, de A(z) sont des nombres complexes non nuls
distincts. Montrer que

e?r

n n 1
kZ::lZ,% l;Izk—Zj =0
j#

QL.
&=
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3283. Proposé par M.N. Deshpande, Nagpur, Inde.

Des n! permutations o de (1,2,...,n), combien y en a-t-il de sorte
que o3 soit la permutation identité ?

3284. Proposé par K.S. Bhanu et M.N. Deshpande, Institut des Sciences,
Nagpur, Inde.

Soit , y et z trois nombres réels positifs satisfaisant 2 + y2 = 22. On
dessine un segment AC de longueur z. Soit B un point tel que BC = x et
90° < LZABC < 180°. Soit M un point sur AC tel que /M AB = /M BC.
Soit finalement D le point sur la droite BM du c6té opposé a3 AC par rapport
a B de sorte que AD = y. Montrer que ZADM = /DCM.

3285. Proposé par Gregory Akulov, étudiant, Université de Regina,
Regina, SK.

Trouver pour quel x :

m<¢3_zm+m+ﬁ> -2

3286. Proposé par Neven Juric, Zagreb, Croatie.

Est-il possible de trouver une fonction f : [0,1] — R telle que
1 1
f(@) = 1+ a:/ F(t)dt + $2/ [£(8)]* dt?
0 0

3287. Proposé par Virgil Nicula, Bucarest, Roumanie.
Soit x, y et z trois nombres réels positifs satisfaisant
zy+yz+zr+zxzyz = 4.
Montrer que

@ (+2)(y+2)+(¥+2)(2+2)+(2+2)(z+2) = (z+2)(y+2)(2+2);
(b) il existe un triangle dont les c6tés ont comme longueur (= + 2)(y + 2),
(y+2)(z+2) et (z+ 2)(x + 2).
3288. Proposé par Ovidiu Furdui, étudiant, Western Michigan University,
Kalamazoo, MI, E-U.

Soit n un entier positif. Evaluer la somme :

LEJ (n — = 1> 2n—2i—1
o 1 n — 21
ol |x] est la partie entiére de x.

——— | NS
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

—_—— N r——r S ———

3027. [2005 : 173, 176; 2006 : 185-186] Proposed by Geoffrey A. Kandall,
Hamden, CT, USA.

Let ABCD be any quadrilateral, and let M be the mid-point of AB.
On the sides CB, DC, and AD, equilateral triangles CBE, DCF,and ADG
are constructed externally. Let IV be the mid-point of EF and P be the mid-
point of FG.

Prove that AM NP is equilateral.

Ed: In the comments following the solution previously featured for
this problem [2006 : 185-186], we challenged our readers to find a purely
geometric solution to the problem. We now have such a solution.

Solution by Waldemar Pompe, University of Warsaw, Poland.

Let X be a point such that tri-
angle EGX is equilateral, as shown
in the diagram. Consider the rotation
Rp with centre D and angle —60°.
This rotation takes the points A and
F to G and C, respectively. Next con-
sider the rotation Rz with centre E
and angle 60°. It takes the points G
and C to X and B, respectively.

Thus, the composition R o Rp
is a translation which takes the points
A and F to X and B, respectively.
Therefore, AFBX is a parallelogram, S .
which implies that the point M, the
mid-point of AB, is also the mid- \ "

point of FX.

Now consider the homothety .
with centre F and scale factor 7. It RV
takes the equilateral triangle EGX to X

the triangle NPM. Hence, ANPM
is also equilateral.

Remark: One can similarly prove the following generalization:

Let ABCD be any quadrilateral, and let M be the mid-point of AB.
On the sides CB, DC, and AD, similar triangles CBE, CFD, and GAD
are constructed externally, such that /BCE = /FCD = ZAGD = « and
/CEB = /CDF = /GDA = 3. Let N and P he the mid-points of EF
and FG, respectively. Then /M PN =« and /PNM = 3.
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3176. [2006 : 462, 464] Proposed by Mihaly Bencze, Brasov, Romania.

Let A; A, ... Ay, be a planar polygon with perimeter 4n, where n is
a positive integer. Prove that this polygon can be covered by a circle with
radius n.

Solution by Mohammed Aassila, Strasbourg, France.

Let ABCD be any minimal rectangle covering the polygon, and let r
and s be the lengths of the sides AB and BC. There must be a vertex of
the polygon on each side of the rectangle, for otherwise, the rectangle would
not be minimal (it is possible that a vertex of the polygon coincides with a
vertex of the rectangle, say B; in this case the vertex of the polygon is on
both sides AB and BC). Let the four vertices of the polygon on the sides of
the rectangle be X € AB,Y € BC, Z € CD, and U € DA. As per our
earlier remark, a pair or two of these vertices might coincide with a vertex
or a pair of opposite vertices of the rectangle, respectively.

Let x, y, 2z, and u be the lengths of the segments AX, BY, CZ, and
DU, respectively, and let P(A; A, ... Ay, ) be the perimeter of the polygon.
Using Minkowski’s Inequality, we have

4n = P(A1A,...Ay,) > P(XYZU)
= Va2 + (s —u)2 +Vu2 + (r—2)?
+VZ+ (-9 + VP + (r—a)?
> Vgt (r—2)+z+(—2)2+ (s —u) +u+(s—y) +y]?
= 2v1r2+s2 = 2AC,

which shows that our rectangle has a diagonal AC < 2n, and therefore, it
can be covered by a circle with radius n. Consequently, the polygon can be
covered by a circle of radius n.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; RICHARD I. HESS,
Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Janous remarked that this problem is a special case of the more general result that a
planar figure of circumference C has a diameter less than %C, but he did not give a reference.
The editor was able to locate a slightly modified version of the current problem as #97b in [1].

References

[1] D.O. Shklarsky, N.N. Chentzov, and 1.M. Yaglom, Geometricheskie otzenki i zadachi iz
kombinatornoi geometrii, Moskva, Nauka, 1975, pp. 313-314.

——— | NS
3178. [2006 : 462, 464] Proposed by Mihaly Bencze, Brasov, Romania.

Determine all integers x, y, z such that 4* +4Y 4 4% is a perfect square.

Comment by Michel Bataille, Rouen, France.

This was problem E2075 in the American Mathematical Monthly. Its
solution appeared in Vol. 76, No. 3, March 1969, p. 308.
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Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; MANUEL
BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio, Spain; CHIP CURTIS, Mis-
souri Southern State University, Joplin, MO, USA; JOHN HAWKINS and DAVID R. STONE,
Georgia Southern University, Statesboro, GA, USA; RICHARD 1. HESS, Rancho Palos Verdes,
CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; SALEM MALIKIC,
student, Sarajevo College, Sarajevo, Bosnia and Herzegovina;, JOEL SCHLOSBERG, Bayside,
NY, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; and the proposer. There was one
incomplete solution.

Janous proposed the more general problem of determining all integers x, y, and z such
that a® + a¥Y + a® is a perfect square, where a is an integer and a > 1. He notes that
there are infinitely many bases a for which solutions exist. He provides two examples: x = 0,
y = z = 1 (the expression 2a + 1 is a perfect square for infinitely many a), and x = 0,
y = z = 2 (the expression 2a? + 1 is a perfect square for infinitely many a, from the Pell
Equation b% — 2a? = 1).

w
3179. [2006 : 462, 464] Proposed by Michel Bataille, Rouen, France.

A transversal of A ABC makes angles «, 3, and ~ with the lines BC,
CA, and AB, respectively. Express the minimum and maximum values of

(cos accos B cosv)? + (sin asin B sin v)?

as functions of p = cos A cos B cos C.

Solution by the proposer.

Let X = (cosacosBcosv)? + (sinasinBsin~v)?, and let U be a

non-zero vector on the transversal. Let A, B, and C be the oriented angles
—_— — —_— — —_— — .
Z(AB,AC), Z(BC,BA), and Z(CA, CB), respectively, and let z, y, and z
. — — —_— = —_— — .

be the oriented angles /(BC, U), Z(CA,U), and Z(AB, U), respectively.
Note that, modulo 27, the value of z is in the set {a, —a, 7 — a, @ — 7}, so
that cos? a = cos? z and sin? a = sin? . Now, again modulo 27, we have

_— —_— =
y = /(CA,BC)+/(BC,U) = 2a+C+m
and
—_— = —_— =
z = /Z(AB,BC)+ «4(BC,U) = z+ 7w — B.
Thus,
X = cos?>zcos’(x + C)cos®(x — B) + sin® zsin’(z + C) sin’(z — B)

é(l + cos 2z)[cos(2x + C — B) — cos A]?
+ 1(1 — cos 2x)[cos(2z + C — B) + cos A]?
= icos2(2w+C—B) —|—%c0s2A
- % cos2x cos(2x + C — B)cos A
[1+ cos(4x + 2C — 2B)] + % cos? A
- % cos A[cos(4x + C — B) + cos(C — B)]
= écos(4:c +2C — 2B) — % cos Acos(4x + C — B)
+ % + % cos A[cos A — cos(C — B)].

1
8
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Using the easy-to-prove relation cos A — cos(C — B) = —2cos BcosC,
we obtain
8X = cos(4x+2C —2B) —2cosAcos(4x+C —B)+1—4p
= Mcos4x + Nsindx +1 — 4p,
where
M = cos(2C —2B) — 2cos Acos(C — B)
and N = 2cosAsin(C — B) —sin(2C — 2B).

We easily find that M2 4+ N2 = 1 — 8p. Then
8X = /1 —8pcos(dx+¢)+1—4p,

for some . It follows immediately that the minimum and maximum values
of X are (1 —4p — /T —8p) and %(1 — 4p + /T — 8p), respectively.

Note: If AABC is equilateral, then p = %, and therefore, the value

of X is independent of the transversal and constantly equal to 11—6. This

particular case was the object of a problem posed by V. Thébault in
Journal de mathématiques élémentaires, 1950-1951, p. 75.

Also solved by MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio,
Spain; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; JOEL SCHLOSBERG,
Bayside, NY, USA; and PETER Y. WOO, Biola University, La Mirada, CA, USA.

w
3180. [2006 : 462, 464] Proposed by Michel Bataille, Rouen, France.

Find all positive real numbers a such that

(Va+3)b+ (V-2 = (va-3)f + (vB+2)}.

Composite of similar solutions by Brian D. Beasley, Presbyterian College,
Clinton, SC, USA; and Chip Curtis, Missouri Southern State University,
Joplin, MO, USA.

V541
2

Set o = and 8 = \/32_1. Then o — B = aB = 1. Since

a® = /54 2and 8% = V5 — 2, we have (\/5-1-2)% — (\/3—2)% =1. Let
z = (va—3) % Then the given equation becomes
(@ +6)5 = z+1. 6]

Since % + 6 = \/a + 3 > 3, we have =z + 1 > 1; whence, = > 0.
Equation (1) is equivalent to =% + 6 = (x + 1)5. Expanding and sim-
plifying gives x* + 222 + 222 + = — 1 = 0; that is,

(*+z+a)(z®+z—-08) = 0.
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Clearly, 22 4+ = + o has no real roots, since 1 — 4o« < 0. The only positive
root of x2 + x — B is

xr =

-1+vT+43  —-14+V2vV5-1
2 N 2 '
which leads to the only solution:

(—1+\/2\/5—1>5+32 7+ 5v5
5 Lreve

= (z®+3)? =
a = (@ +3) .

[ Ed: The last step can be verified either by brute force computations or
by using a computer algebra system. ]

Also solved by DIONNE BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE,
Angelo State University, San Angelo, TX, USA; ROY BARBARA, Lebanese University, Fanar,
Lebanon; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; RICHARD I. HESS,
Rancho Palos Verdes, CA, USA; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ur-
sulinengymnasium, Innsbruck, Austria; D. KIPP JOHNSON, Beaverton, OR, USA; GEOFFREY
A. KANDALL, Hamden, CT, USA; VEDULA N. MURTY, Dover, PA, USA; PETER Y. WOO, Biola
University, La Mirada, CA, USA; and the proposer. There was also one incorrect solution.

: 145\ 3 :
Demis and Hess gave the answer as a = 9 + (T) , while Howard and Johnson
=\5
gavea = 9 + (%‘/5) .

——— | NS

3181. [2006 : 462, 464] Proposed by Roger Zarnowski, Angelo State
University, San Angelo, TX, USA.

Show that for every integer n > 2, the equation z™ + z ™™ =1+ =
has a root in the interval (1, 1+ %)

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC, USA.
Let f(z) = 2™ + ™ — = — 1. First we show that f(1+ %) > 0. For

1

n
n = 2, we have f(1 4+ %) = 3—76. For n > 3, the Binomial Theorem implies
that

1\ 1 nn—1) 1 n—1 1
(1—|——) >1—|—n(;)—|—7-— =24+ -—— 2 2+ —;

n 2 n2 2n n

thus, f(1+2)> 1+ )" - (14+23)-1>0.

Next, we let g(z) = z" f(x) = 2 — 2™+ — 2™ + 1. Then it is easy
to verify that g(z) = (& — 1)h(x), where

h(w) — wZn—1+m2n—2+.._+mn+2+wn+1_mn—l_mn—z_.___m_l.
Since f(1+ %) > 0, we deduce that g(1 + 1) > 0and h(1+ %) > 0.
But h(1) = n — 1 —n = —1 < 0; thus, the Intermediate Value Theorem

implies that there exists € (1,1 + ) such that h(r) = 0. It then follows
that £(r) = 0.
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Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL
BATAILLE, Rouen, France; MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ,
Logrofio, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOHN HAWKINS and DAVID
R. STONE, Georgia Southern University, Statesboro, GA, USA; RICHARD 1. HESS, Rancho
Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; D. KIPP
JOHNSON, Beaverton, OR, USA; KEE-WAI LAU, Hong Kong, China; SALEM MALIKIC,
student, Sarajevo College, Sarajevo, Bosnia and Herzegovina; JOEL SCHLOSBERG, Bayside, NY,
USA; “THE THIRD FLOOR”, Southeast Missouri State University, Cape Girardeau, Missouri,
USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Most solvers used the facts that £(1) = 0 and /(1) = —1 to deduce that f(1+¢) <0
for sufficiently small e > 0.

Lau showed that f has only one root exceeding one, and Woo established the stronger

result that in fact, r € (1, 1+ m)

N N —

3182. Replacement. [2007 : 40, 43] Proposed by Arkady Alt, San Jose,
CA, USA.

Let a, b, and c be any positive real numbers, and let p be a real number
suchthat 0 < p < 1.

(a) Prove that

e + b + c > L (@a'™P +b'"P + c'7P)
b+c)p  (c+a)p (a+bp — 2P ’
(b) Prove that, if p = 1/3, then
a b c 1
> — (P 4+ bP 4 c'7P) .
@t T oror T eqrap =@ P
(¢)* Prove or disprove

a " b n c > 1
Va+b Vbtec Veta T V2

(Va+vb+ve).

Solution to part (a) by Cao Minh Quang, Nguyen Binh Khiem High School,
Vinh Long, Vietnam.

Since the proposed inequality is homogeneous, we may suppose that
a + b + ¢ = 1. This yields the equivalent inequality

¢ + b + € > L (al_” +b7P 4 cl_p)
1—a)» (1-=bp @@A—c)p — 2° ’

Witout loss of generality, we may assume that a > b > c. It then follows
that

1 1 1
> > .
l1—a — 1—-b — 1-—c¢
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Using Chebyshev’s Inequality and the AM-GM Inequality, we have

a b c
l—ap  (A—bp  (1-op
at+b+tec 1 1 1
-3 (1—a>P+(1—b>v+(1—c>v]
> 1 > 1 _ 3P
= ((1—a)(1—b)(1_c))1’/3 = [1_a+1;b+1_cr op

Thus, we need only prove that P 4+ 1P 4 1P < 3P,

Let f(x) = x'~P. Since f’(x) = —p(1 —p)z~ P~ land 0 < p < 1, we
see that f”/(x) < 0for 0 < = < 1. Hence, f is a concave function on (0, 1).
Using Jensen’s Inequality, we get

al"P £ 1P P < 3f (%(a +b+c)) = 3f (%) — 3P,
[Ed.: Equality holds if and only if a = b = ¢.]

Solution to part (b) by Vo Quoc Ba Can, Can Tho University of Medicine and
Pharmacy, Can Tho, Vietnam.

We will first prove that, for all z > 0, the following inequality holds
4z3+/2
ng;!i— > 522 1. )
3+ 1
This inequality is trivial if x < 1/4/5. For > 1/4/5, define

1282°
(3 +1)(522 —1)3

flx) =

Proving inequality (1) is equivalent to showing that f(z) > 1. We compute

384x%(1 — z) (222 — 3z — 3)

F@ = — i G- 1

’

from which we see that f/(z) > 0for1 < = < (3 ++/33) and f'(z) < 0
for 1/4/5 < @ < 1 and for x > 1(3 + v/33). Thus,
. . . 128
f@) > min{fQ), lim f(2)} = min{1,722} =1

for all > 1/+/5. Therefore, inequality (1) holds for all z > 0.

Replacing = in (1) by &/a/b, /b/c, and /c/a in turn yields:

av'2 > 5a3 — b3 bv/2 > 5b3 — 3 cV/2 > 5¢3 — a3
va+b — 4 " Vb¥e T 4 " YeF+a T 4

Adding these inequalities produces the desired result. Equality holds if and
onlyifazbzc.
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Solution to part (c) by Vo Quoc Ba Can, Can Tho University of Medicine and
Pharmacy, Can Tho, Vietnam.

If we set a = 22, b = y2, and ¢ = 22, the proposed inequality becomes

> ey 2
cyclic x? + y \/5
By squaring both sides, we can rewrite the inequality as

x?y? S (w+y+2)2‘
D AP Pl st (s I

cyclic cyclic

By the Rearrangement Inequality,
2 2 1
2 L 2+yz)(y + 22) Z +y N

cyclic cycllc
1

Z +y N

cychc

-y 2
- 2 2
cyclic ety
Thus, it suffices to prove that
w4 waZ x _|_ y + 2 2
I D > Byl @
2 + y2 2 + y2 2

cyclic cyclic

Moreover, we observe that

Z2+ =) @ -9%) =

cyclic y cyclic
Hence,
PP Pt &
2 2~ 9 2 2
cyclic z°+y 2 cyclic z°+y

Therefore, inequality (2) is successively equivalent to

w4+ 4 4:1:22
S ETV S TP s @iy+2)?,

2 2 2 2
cyclic 5ty cyclic e +y
2 2 2,2
¢+ vy 2z%y
SEIT s 2 s 2w,
cyclic cyclic cyclic

a4
Z% =z 0,
cyclic 2(58 +y)

which is clearly true. Therefore, the inequality holds. Equality holds if and
onlyifazbzc.
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All three parts were also solved by SALEM MALIKIC, student, Sarajevo College, Sarajevo,
Bosnia and Herzegovina; and VO QUOC BA CAN. Part (a) was solved by SEFKET ARSLANAGIC,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, France;
JOE HOWARD, Portales, NM, USA; and WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria. Part (c) was also solved by CAO MINH QUANG. The proposer solved parts (a) and (b).

There were several solvers who had submitted correct solutions to the original 3182,
which was the same as 3096 [2005 : 544, 547; 2006 ; 531]. Most of them were already listed
there as having solved 3096. However, CAO MINH QUANG, Nguyen Binh Khiem High School,
Vinh Long, Vietnam; and D. KIPP JOHNSON, Beaverton, OR, USA should be added to that list.

—— | NS

3183. [2006 : 463, 464] Proposed by Arkady Alt, San Jose, CA, USA.

Let ABC be a triangle with inradius » and circumradius R. If s is the
semiperimeter of the triangle, prove that

V3s < r+4R.

Remark by Chip Curtis, Missouri Southern State University, Joplin, MO,
USA; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; and D. Kipp
Johnson, Beaverton, OR, USA.

This is a very old problem. Its origin is referred back to the year 1872
in [1, item 5.5].

References

[1] O. Bottema et al., Geometric Inequalities, Groningen, 1969

Also solved by HAYO AHLBURG, Benidqrm, Spain; MIGUEL AMENGUAL COVAS, Cala
Figuera, Mallorca, Spain; SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina (3 solutions); MICHEL BATAILLE, Rouen, France; MIHALY BENCZE, Brasov,
Romania; MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logroiio, Spain;
SCOTT BROWN, Auburn University, Montgomery, AL, USA; APOSTOLIS K. DEMIS, Varvakeio
High School, Athens, Greece; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD, Portales,
NM, USA; KEE-WAI LAU, Hong Kong, China; SALEM MALIKIC, student, Sarajevo College,
Sarajevo, Bosnia and Herzegovina; VEDULA N. MURTY, Dover, PA, USA; PANOS E.
TSAOUSSOGLOU, Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
the proposer.

———— || NS

3184. [2006 : 463] Proposed by Fabio Zucca, Politecnico di Milano,
Milano, Italy.

For any real number z, let (x) denote the fractional part of x; that is,
(z) =  — |x|, where |z] is the greatest integer not exceeding x. Given
n € 7, find all solutions of the equation

(z®) —n(z) = 0.
Solution by Michel Bataille, Rouen, France.

[Ed: We will use {z} instead of (x) to denote the fractional part of =.]
Let S,, denote the set of all real solutions to the equation

{z?} —n{z} = 0. @
Note that Z C S,,, since {k?} = {k} = Oforall k € Z.
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If n < 0 and a is not an integer, then {a?} > 0 and {a} > 0, so that
a cannot be a solution of (1). Thus, S,, =Z if n < 0.

If n =0, then S,, = So = {+xv/m : m € Z, m > 0}.

We will now determine the non-integer solutions of (1) forn > 1. Let s
be such a solution, and let k = | s]|. Then {s} # 0 and n{s} = {s2} € [0,1).
Hence, 0 < n{s} <landk < s < k+ (1/n).

Casel. k£ > 0.
Since s > k > 0, we have s > k2. Then [s?| = k? + m for some
integer m > 0, and

(k:—l—{s})2 = s = K*+m+ {5’} = K> +m+n{s}.

Thus, we see that {s} is a solution to the quadratic equation p(z) = 0, where
p(z) = 2% + (2k — n)x — m. Note that m # 0 (since {s} is not an integer)
and that {s} is the unique positive solution to p(x) = 0, namely,

{s} = t(n—2k+/(2k—n)2+4m).
Thens = 1(n+/(2k —n)2 +4m).
Since 0 < {s} < 1/n, and since p(0) = —m < 0 and p({s}) = 0,

we must have p(1/n) > 0, which yields m + 1 < (2kn + 1)/n2. Then
m + 1 < |2k/n], because if n > 1, then

LZkzn—i—lJ _ {L2k+(1/n)JJ _ {%J

n?2 n n

and if n = 1, then (2kn + 1)/n?2 = 2k + 1 = |2k/n] + 1. Therefore,

me{1,2,...,|2k/n] —1}. Then |2k/n] — 1 > 1; whence, k > n.
Conversely, let s = k + a,,, where k is an integer with £k > n and
am = i(n—2k+/(2k—n)2+4m) form € {1, 2, ..., [2k/n] — 1}.

Then one can verify that «,,, € (0,1/n). In addition,
s = k2+afn+2kam = k2+m—|—nam;

whence, {s?} = na,,, = n{s} and s is a solution of (1).
Thus, the non-integral positive solutions to (1) are the numbers of the
form 1 (n+/(2k —n)2 +4m ) fork > nandm € {1, 2, ..., [2k/n] —1}.

Case 2. k£ < —1.

First we assume that n > 1. Since £ < s < k + (1/n), we have
s2 = k2 —m + {s?}, where m € {1, 2, ..., —|2k/n]}. Asin Case 1, {s}
must be a solution of the quadratic equation z2 + (2k — n)z + m = 0.
Since 0 < {s} < 1/n, we must have m < 1 — (2k/n) — (1/n?), or (since
(2kn + 1)/n? is not an integer),

R

We note that {s} is the smallest solution to the quadratic equation. Hence,
{s}=3(n—2k—/(n—2k)2—4m)and s = 1(n—/(n —2k)2 —4m ).
Conversely, it can be checked that such a number is a solution to (1).
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Thus, if n > 1, the negative non-integer solutions of (1) are the real

numbers 2 (n—/(n —2k)2 —4m ) form € {1,2,..., 1+ [(-2k—1)/n|}
and k£ < —1.

If n = 1, we find in a similar manner that the negative solutions of (1)
are 1(1— /(1 —2k)2 —4m ), wherem € {1, 2,..., —2k—1}and k < —1.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; JOEL SCHLOSBERG, Bayside, NY, USA; and the proposer.
There was one partly incorrect solution submitted.

NN —

3185. Replacement. [2007 : 40, 44] Proposed by Shaun White, student,
Vincent Massey Secondary School, Windsor, ON.

(2n)™

Let a,, denote the units digit of (4n)(®™""™ | Find all positive integers
n
n such that > a; > 4n.

=1
Solution by Michel Bataille, Rouen, France.

We show that the given inequality holds except for n = 5.

Modulo 10, we have 4n = 4 whenn = 1 orn = 6, 4n = 8 when
n=2o0orn="7 4n = 2whenn =3 orn = 8, 4n = 6 whenn = 4 or
n =9, and 4n = 0 when n = 0 or n = 5. The powers of 4, 8, 2, 6, 0 are
given modulo 10 as follows:

e {4™},,>1 is the 2-periodic sequence 4, 6, ...

e {8™},,>1 is the 4-periodic sequence 8, 4, 2, 6, ...
e {2™},,>; is the 4-periodic sequence 2, 4, 8, 6, ...
e {6™},,>1 and {0™},,>, are constant sequences.

As a result, in order to compute a,,, we only need to determine the
values of (3n)(*»"™ modulo 4. But, since (2n)™ is always even, it is clear
that (3n)*»" = 1 (mod 4) or (3n)®*»" = 0 (mod 4) according as n is

n

odd or even. It is then easy to obtain the values of a,,, S,, = }_ a;, and 4n

=1
forn =1, 2, ..., 15. They are given in the following table:
n|1/2|3|4|5|6|7|8]9|(10|11|12|13|14|15
a,|4/6 | 26|06 |86 6 |0|46|2|6]0
S,|4[10(12|18 |18 (24 |32|38 |44 |44 |48 |54 |56 |62 |62
4n (4| 8 (1216|2024 |28 |32|36|40|44|48 |52 |56 | 60

The sequence {a,, } is 10-periodic and, as the table shows, the sum of a;
over 10 consecutive valuesof 1is6+84+64+64+0+4+6+24+64+0 = 44.
Therefore, for all integers &k and m with & > 0 and m > 0, we see that
Sm+10k = Sm + 44k. Moreover, from the table, we get S,,, > 4m for



444

m € {6, 7, ..., 15}. It follows that if n > 6, then, by writingn = m + 10k
with £k > 0 and 6 < m < 15, we have

S, = Spmtiok = Sm +44k > 4m + 44k > 4m + 40k = 4n.

We also see that S,, > 4n forn =1, 2, 3, 4 and S5 < 4 X 5. The result
follows.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; BRIAN
D. BEASLEY, Presbyterian College, Clinton, SC, USA; RICHARD I. HESS, Rancho Palos Verdes,
CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; JOSE H. NIETO,
Universidad del Zulia, Maracaibo, Venezuela; and the proposer. There was one incorrect
submission.

This was a replacement problem. There were a number of solvers who solved the orig-
inally posed 3185 [2006 : 463, 465], which was a repeat of 2935 [2004 : 174, 176; 2005 : 188].
The following solvers should be added to the list of solvers for 2935: MIHALY BENCZE, Brasov,
Romania; PAUL BRACKEN, University of Texas, Edinburg, TX, USA; CAO MINH QUANG,
Nguyen Binh Khiem High School, Vinh Long, Vietnam; and PANOS E. TSAOUSSOGLOU, Athens,
Greece.

B e WSS D W

3186. [2006 : 463, 465] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania.

Let f(«) be a function on an interval I which is convex for x > a
for some a € I. Suppose that for all ¢, =5, ..., =, € I which satisfy
T, + T3 + - -+ + =, = na, the following inequality holds:

f(x1) + f(z2) + -+ f(xn) > f(ﬂ71+$2+-"+33n) .

n n

Prove that this same inequality holds for all x,, x2, ..., £, € I such that
x1 + a2+ -+ x > na.

Solution by the proposer.

Consider any b € I such that b > a. Let =1, x3, ..., ,, € I such that

T, + T2 + - -+ + x,, = nb. We have to prove that
f(x1) + f(z2) + -+ + f(zn) = nf(b). (1)
Without loss of generality, assume that z; < z, < ... < z,. If

x; > a, then (1) is just Jensen’s Inequality for convex functions. We now
suppose that z; < a. Since z; + z2 + - -+ + x,, = nb > na, we must have

Zn > a. Thereissomek € {1,2,...,n—1}suchthatz,_r < a < zp_y1.
Define
d = Tnktr et and c — na — (x1+-- -+ Tn—k)
k k ’

Then
k(d—c) = (z14+22+---+x,) —na = n(b—a), 2
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which implies that ¢ < d. Since 1 < z2 < --- < 2z, and xy—k < Tp—k+1,
we have
_ itz Fxp Tn—kt1+ -+ Tn
b = - < = = d.
Since 21 < 2 < +++ < Tp_x < a, we have 22 T "+ @n-k 4 and hence

n—k
a < c. Thus, a < b < dand a < ¢ < d. In other words, both b and c are in
the interval (a, d). Note that f is convex on [a, d].
According to Jensen’s Inequality for convex functions,

F(@n—kt1) +---+ f(zn) > kf(d). (3)
On the other hand, by the given hypothesis, we have

F@) + -+ F(@nr) + kf ("“‘ (1 +k;"+”“"—’“)) > nf(a);

that is,
f(@1) + -+ f(@n—k) + kf(c) > nf(a). )
Adding (3) and (4), we get
f(@1) + f(x2) + -+ f(zn) > k(f(d) — f(c)) +nf(a).
Thus, we can prove (1) by showing that k(f(d) — f(c)) > n(f(b) — f(a)).
In view of (2), this is equivalent to

f(d) — f(c) f(b) — f(a)
d—c = b—a ) ®)

To prove this inequality, we will prove that

f@—=fe) 5 fd)—=f(a) 5 f(b)—f(a) 6)
d—c - d—a - b—a

The left inequality in (6) reduces to

(d—c)f(a) + (c—a)f(d) = (d—a)f(c);
that is,

(e e 2 (0= et (G5 HED)

which is true by Jensen’s Inequality (applied to f on the interval [a,d]).
The right inequality in (6) reduces to

(d—=b)f(a) + (b—a)f(d) = (d—a)f(b);
that is,

(d=b)f(a)+ (b—a)f(d) > ((d=b)+ (b—a))f ((«Zd—_bg i gz; = ng)
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which is also true by Jensen’s Inequality. Thus, (6) is true and the proof is
complete.

Also solved by MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio,
Spain. One incomplete solution was submitted.

The featured proof above could have ended with inequality (5), since that inequality is
a standard property of convex functions expressing the fact that their graphs have increasing
slopes.

——— || NS

3187. [2006 : 463, 465] Proposed by Michel Bataille, Rouen, France.

Let ABCD be a planar quadrilateral which is not a parallelogram. Let
C’ and D’ be the orthogonal projections onto the line AB of the points C
and D, respectively. The perpendiculars from C to AD and from D to BC
meet at P; the perpendiculars from C’ to AD and from D’ to BC meet
at Q. Show that PQ is perpendicular to the line through the mid-points of
AC and BD.

Solution by Apostolis K. Demis, Varvakeio High School, Athens, Greece, with
minor modifications by the editor.

We make use of the known theorem:
For any four distinct points U, V, X, and Y, we have XY 1| UV if
and only if XU? — XV2 =YU? —-YV?Z2,

Let M and N be the mid-points of AC and BD, respectively.

Then QP 1 MN if and only if QN2 — QM? = PN? — PM?. Using
the Median Theorem for triangles QBD, QAC, PBD, and PAC, we see
that this equation is equivalent to

(@B? + QD?* — 1 BD?) — (QC? + QA% — 1 AC?)
= (PB?+ PD? - ; BD?) — (PC? + PA? — AC?) ;
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that is,
(QB? — QC?) + (QD? — QA®) = (PB? — PC?) + (PD? — PA?).

Since QD’ 1 BC, QC’ .. AD, PD 1 BC, and PC 1 AD, the above is
equivalent to

(D'’B? — D'C?) + (C'D? — C'A?) = (DB? — DC?) + (CD? — CA?);
that is,
C'D?> — (DB? — D'B?) = D'C? — (CA*> —C'A?).

Since AD’BD and AC’AC are right-angled, we can use the Pythagorean
Theorem to rewrite the last equation as C’D? — D’D? = D'C? — C'C?.
Then, since AC’'D’'D and AC’D’C are right-angled, we obtain the
equ1valent equation D’C’? = D’C’?, which is true.

Also solved by FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain;
MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ Logroiio, Spain; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; JOHN G. HEUVER, Grande Prairie, AB;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; D. KIPP JOHNSON, Beaverton,
OR, USA; GEOFFREY A. KANDALL, Hamden, CT, USA; D.]. SMEENK, Zaltbommel, the
Netherlands; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Only Demis and the proposer used purely geometric techniques. The others solved the
problem using trigonometry and/or vectors.

NN —

3188. Replacement. [2007 : 109, 112] Proposed by José Luis Diaz-Barrero,
Universitat Politécnica de Catalunya, Barcelona, Spain.

Let z1, 22, ..., 2z, be the zeroes of the complex polynomial
A(z) = 2"+ ap-12""'+---+ a1z +ao,

where a¢ # 0. Prove that

n zZ1 z2 e Zn
z1 1+ 22 1 1
2 .. 2
det z'2 1 1"‘.22 . 1 = aj.
Zn 1 1 cee 1422

Solution by José H. Nieto, Universidad del Zulia, Maracaibo, Venezuela,
modified slightly by the editor.

Note that the matrix in the problem statement above is A2, where

o1 1 --- 1
1 2 0 --- 0
A, = 1 0 2 --- 0
1 0 O Zn
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The determinant in the problem is det(A2) = D2, where D,, = det(A,,).
Expanding D,, along the last row, we find that, for n > 2,

1 1 1 1 1
zz 0 O 0 0
0 22 O 0 0
D, = (_1)n+2 det | 9 o 23 0 o |+ (—1)2n+2ZnDn_1
L 0 0 0 .-+ zp_1 O]

= —2z122°*+2p_1+ 2nDp_1.

Since D; = —1, an easy induction shows that
n
Dp = =) (z122-+ 2+ 2n),
k=1

where 2, indicates that the factor z; is missing. Then D,, = (—1)™ay, since

a; = (=1)"71 3 (2129++-2k---2,) by Vieta’s Formula. It follows that
k=1
det (Afl) = a%.
Note that the condition ag # 0 is superfluous.

Also solved by MICHEL BATAILLE, Rouen, France; G.P. HENDERSON, Garden Hill,
Campbellcroft, ON; and the proposer. There was one incomplete solution submitted.
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